EE 521: Instrumentation and Measurements

Aly El-Osery

Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA

October 14, 2009

- Thermal Noise
- Shot and Flicker Noise
- Available Power

2 System Noise Characterization

- Noise Figure
- Effective Noise Temperature

(Physical Noise Sources)

System Noise Characterization

Thermal or Johnson Noise

Thermal or *Johnson* noise arises from the random motion of charge carriers in a conducting or semiconducting medium.

Noisy Resistor

Nyquist's theorem

$$v_{rms}^2 = \langle v_n^2(t) \rangle = 4kTRB \quad V^2 \tag{1}$$

represents the mean-squared noise voltage appearing across the terminals of a resistor of *R* ohms at temperature *T* Kelvin in the frequency band *B* hertz where $k = 1.38 \times 10^{-23}$ J/K is Boltzmann's constant.

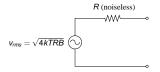


Figure: Thevenin equivalent circuit for a noisy resistor.

(Physical Noise Sources)

Noisy Resistor

$$i_{rms}^{2} = \langle i_{n}^{2}(t) \rangle = \frac{\langle v_{n}^{2}(t) \rangle}{R^{2}} = 4kTGB \quad A^{2}$$
(2)
$$i_{ms} = \sqrt{4kTRB} \quad \bigoplus_{\substack{k \in G = \frac{1}{R} \\ (noiseless)}}$$

Figure: Norton equivalent circuit for a noisy resistor.

Nyquist's Formula

Noise computation can get considerably lengthy if the circuit contains many resistors. Using Nyquist's formula, the mean square noise voltage produced at the output terminal of any one-port network can be computed as

$$< v_n^2(t) >= 2kT \int_{-\infty}^{\infty} R(t) dt$$
 (3)

where R(f) is the real part of the complex impedance seen looking back at into the terminals. If the networks contain only resistors

$$v_{rms}^2 = 4kTR_{eq}B \quad V^2 \tag{4}$$

Shot Noise

Shot noise results from the discrete nature of current flow in electronic devices.

$$\dot{l}_{rms}^2 = <\dot{l}_n^2(t)> = 2e I_d B A^2$$
 (5)

where $e = 1.6 \times 10^{-19}$ C is the charge of and electron.

(Physical Noise Sources)

System Noise Characterization

Flicker Noise or 1/f Noise

The power spectral density of flicker noise is characterized by 1/f dependency.

• Maximum power is transferred from a source with internal resistance R to a resistive load R_L if $R = R_L$, i.e., load is *matched* to the source.

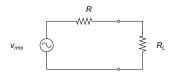


Figure: Thevenin equivalent for a source with load resistance R_L .

The delivered power to the load, P_a, is known as available power.

$$P_a = \frac{1}{R} \left(\frac{1}{2} v_{rms}\right)^2 = \frac{v_{rms}^2}{4R} \tag{6}$$

Assuming a noisy resistor, the available power is

$$P_{a,R} = \frac{4kTRB}{4R} = kTB \qquad W \tag{7}$$

Cascade of subsystems

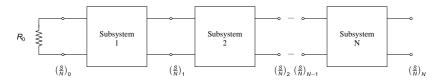


Figure: A system consisting of a cascade of subsystems.

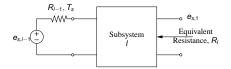


Figure: /th subsystems

Physical Noise Sources

System Noise Characterization

Noise Figure F

 $F = \frac{SNR_{in}}{SNR_{out}}$

Looking at the /th subsystem

$$\left(\frac{S}{N}\right)_{I} = \frac{1}{F_{I}} \left(\frac{S}{N}\right)_{I-1}$$
(9)

Noise Figure F

$$F_l = 1 + \frac{P_{int,l}}{G_a k T_s B} \tag{10}$$

where G_a is the available power gain of the */*th subsystem, and $P_{int,l}$ is the internally generated noise power of the */*th subsystem.

To provide a common standard assume $T_s = T_o = 290 K$

$$F_l = 1 + \frac{P_{int,l}}{G_a k T_0 B} \tag{11}$$

EE 521: Instrumentation and Measurements

11/13

Define the effective noise temperature T_e as

$$T_e = \frac{P_{int,l}}{G_a k B} \tag{12}$$

Therefore, we can write the noise figure as

$$F_l = 1 + \frac{T_e}{T_0} \tag{13}$$

and

$$T_e = (F_l - 1)T_0$$
 (14)

Physical Noise Sources

(System Noise Characterization)

Friis's Formula

$$F = F_1 + \frac{F_2 - 1}{G_{a_1}} + \frac{F_3 - 1}{G_{a_1}G_{a_2}} + \dots$$
(15)
$$T_e = T_{e_1} + \frac{T_{e_2}}{G_{a_1}} + \frac{T_{e_3}}{G_{a_1}G_{a_2}} + \dots$$
(16)

