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Figure: Fourier transform pair - rectangular window and sinc function

Fourier transform of a rectangular window is a sinc.

Inverse Fourier transform of a rectangular window is also a sinc.

We can only have either timelimited or bandlimited but not both.
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Transform Equations

DTFT

x(n) =
1

2π

∫
2π

X (ω)ejωndω (1)

X (ω) =
∞∑

n=−∞

x(n)e−jωn (2)
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Transform Equations

DFT

X (k) =
N−1∑
n=0

x(n)e−j2πkn/N , k = 0, 1, 2, . . . , N − 1 (3)

x(n) =
1
N

N−1∑
k=0

X (k)ej2πkn/N , n = 0, 1, 2, . . . , N − 1 (4)
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CTFT
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Figure: Continuous Fourier transform of continuous signal
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DTFT

∆t = 1
Fs

X (ω)

ω

FFs

2π

t

X (F )DTFT

x(t)

Figure: Discrete time Fourier transform
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Figure: Discrete Fourier transform
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Limitations

1 The number of data points must be finite.

2 The computation time required increase as the number of data
points increase.

3 Frequency resolution is important in determining the signal
content.

4 Limiting the number of points of a continuous time signal results
in spectral leakage.
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Number of Points

Assume the number of point in the time domain is Nt and the
number of points in the frequency domain is NF .

Nt =
T
∆t

=
1/∆F
1/Fs

=
Fs

∆F
= NF = N (5)
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Zero Padding

We can increase the time series sequence by adding zeros and
that would not affect it. By doing so the number of points in the
time domain, Nt is increased, and consequently, also is the
number of points in the frequency domain, NF . Referring to
Eq. 5, this means that ∆F is decreased.

Zero padding shows more details but not more information
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Window Size
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Figure: N = 4096

12 / 27
EE 521: Instrumentation and Measurements



Outline Bandlimited and Timelimited Signals Fourier Transform Overview A Closer Look on DFT FFT

Window Size
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Figure: N = 4096
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Window Size
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Figure: N = 4096
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Min. Resolvable Resolution

The DTFT of a rectangular window of length L is given by

W (ω) =
sin(ωL/2)

sin(ω/2)
e−jω(L−1)/2 (6)

To avoid main lobes of overlapping

|ω1 − ω2| > 2π/L (7)
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Different Windows

Spectral leakage is due to the sharp cut-off rectangular window.
To reduce this effect different windows with smoother roll-off are
used. This is at the cost of wider main lobe which may be
undesirable.
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Hamming Window
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Figure: N = 4096
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Hamming Window
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Figure: N = 4096
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Hamming Window
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Figure: N = 4096
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An efficient way to compute DFT.

Direct computation of DFT requires approx. N2 complex
multiplications and N2 complex additions.

FFT algorithm requires approximately N/2 log2 N.

For a 1024 point signal direct computation requires 1,048,576
complex computation versus 5,120 of the FFT.
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Example

Best way to explain that is using an example. Assume that we
have a sinusoidal signal that we want to determine its Fourier
transform.

>> fs=100;
>> t=0:1/fs:1;
>> y=cos(2*pi*t);
>> plot(t,y)
>> xlabel(’t’)
>> ylabel(’y(t)’)
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Figure: 1sec sinwave of 1Hz
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Straight FFT

Use the following commands to compute the FFT, find its length
and plot the magnitude of Y .

>> Y=fft(y);
>> length(Y)
ans =

101
>> plot(abs(Y))

0 20 40 60 80 100 120
0

10

20

30

40

50

60

Figure: 101-point FFT
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More Details

We can specify the length of the FFT to be longer by

>> N=1024;
>> Y=fft(y,N);
>> plot(abs(Y))
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Figure: 1024-point FFT
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fftshift

>> plot(fftshift(abs(Y)))
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Figure: fftshift
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Axes Mapping

>> k=-N/2:N/2-1;
>> plot(k,fftshift(abs(Y)))
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Figure: fftshift with k = −N/2 : N/2 − 1

25 / 27
EE 521: Instrumentation and Measurements



Outline Bandlimited and Timelimited Signals Fourier Transform Overview A Closer Look on DFT FFT

Axes Mapping

Now we get the axis containing positive and negative values.
All we have left to do is to map it to actual frequencies.

>> plot(k*fs/N,fftshift(abs(Y)))
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Figure: Frequency mapping
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Window Length

>> fs=100;
>> t=0:1/fs:10;
>> y=cos(2*pi*t);
>> N=4096;
>> Y=fft(y,N);
>> k=-N/2:N/2-1;
>> plot(k*fs/N,...

fftshift(abs(Y)))
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Figure: FFT of a 10sec 1Hz sinwave
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