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Definition

The z-transform of a discrete-time signal x(n) is defined as the
power series

X (z) ≡
∞

∑

n=−∞

x(n)z−n (1)

where z is a complex variable, and hence, can be represented
as a magnitude and phase.

z = rejθ (2)

It exists only for those values of z for which this series
converges.
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Summation Formula

N
∑

n=M

an =

{

aM
−aN+1

1−a , if a 6= 1

N − M + 1, if a = 1
(3)

4 / 27
EE 521: Instrumentation and Measurements



Outline The z-Transform Linear Time-Invariant System Filter Design

Right-Sided Sequence

x(n) = anu(n)
Z

←→ X (z) =
1

1 − az−1 (4)

This definition is not complete without stating the
region-of-convergence (ROC).
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left-Sided Sequence

x(n) = −anu(−n − 1)
Z

←→ X (z) =
1

1 − az−1 (5)

This definition is not complete without stating the
region-of-convergence (ROC).
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Poles and Zeros

If X (z) is rational function, then

X (z) =
B(z)

A(z)
=

b0 + b1z−1 + · · · + bMz−M

a0 + a1z−1 + · · · + aNz−N

=
b0

a0
z−M+N (z − z1)(z − z2) · · · (z − zM)

(z − p1)(z − p2) · · · (z − pN)

(6)

z = z1, z2, . . . , zM and p = p1, p2, . . . , pN are the zeros and
poles of X (z), respectively.
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A relaxed linear time-invariant system with input x(n), an
impulse response h(n), and an output y(n) can be expressed in
the z-domain as

Y (z) = H(z)X (z) (7)

where H(z) is the transfer function of the system.
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Difference Equation

y(n) = −
N

∑

k=1

aky(n − k) +
M

∑

k=0

bkx(n − k) (8)

and hence,

Y (z)

X (z)
= H(z) =

∑M
k=0 bkz−k

1 +
∑N

k=1 akz−k
(9)
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Causality and Stability

Causality

A system is causal if the ROC is the exterior of a circle.

Stability

A system is stable if the ROC includes the unit circle.

Causal and Stable
A system is both causal and stable if the poles are inside the
unit circle.
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Response to Complex Exponential

Using the convolution equation

y(n) =
∞

∑

k=−∞

h(k)x(n − k) (10)

If this system is excited by a complex exponential

x(n) = Aejωn
, −∞ < n < ∞ (11)

where ω is an arbitrary frequency, then

y(n) = AH(ω)ejωn (12)
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Relationship to Fourier Transform

If the ROC includes the unit circle, then

H(ω) = H(z)|z=ejω =
∞

∑

k=−∞

h(n)ejωn (13)
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Effect of Pole-Zero Location

L

ω
zk×pk

Figure: Frequency response using the location of poles and zeros

mag =
product of distances from all zeros to L
product of distances from all poles to L

(14)
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Filter Specs

Figure: Filter Specifications
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By Pole-Zero Placement

Place zeros at locations you want the magnitude to decrease.

Place Poles at locations you want the magnitude to increase.
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Transformation from Analog Filters

Use a transformation to convert analog filters to digital filters.
The bilinear transformation is frequently used.

s =
2
T

(

1 − z−1

1 + z−1

)

(15)
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Transformation from Analog Filters

The bilinear transformation causes a frequency warping
described by

ω = 2 tan−1 ΩT
2

(16)
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Transformation from Analog Filters

Some common analog filter includes

Butterworth: No ripple in either passband or stopband.

Type I Chebyshev: ripple in passband only.

Type II Chebyshev: ripple in stopband only.

Elliptic: ripple in both passband and stopband.
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Quantization Effects

Due to quantization, the location of poles and zeros will be
different than designed. This will cause the frequency response
to be modified. To minimize the effects of quantization, build
your filter as a cascade of second order systems.
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A system using FIR filters has the output characterized by

y(n) =
M−1
∑

k=0

h(k)x(n − k) (17)

FIR filters with symmetric and antisymmetric impulse
responses have linear phase.
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FIR Filter Design Using Windows

1 Compute the infinite impulse response from the an ideal impulse
response.

hd (ω) =
1

2π

∫

π

−π

Hd (ω)ejωndω (18)

2 Compute a finite impulse response using a finite length window.

h(n) = hd (n)w(n) (19)

3 Windows include rectangular, Hamming, Hanning, Bartlet,
Blackman, etc.

4 The wider the window, the sharper the cut-off.
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.

Figure: c©Proakis and Manolakis, Digital Signal Processing, 4th
Edition, Prentice Hall, 2007
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.

Figure: c©Proakis and Manolakis, Digital Signal Processing, 4th
Edition, Prentice Hall, 2007
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FIR Filter Design Using Frequency-Sampling Method

1 Design the required filter in the Frequency domain.

2 Sample the designed magnitude response.

3 Add the linear phase.

4 Compute the IDFT to obtain h(n).
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Figure: Frequency sampling approach with not transition points (left)
and with transition points (right).
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Figure: Magnitude response using frequency sampling approach with
not transition points (left) and with transition points (right).
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FIR Filter Design Using Equiripple Method

Uses the Alternation Theorem and solves an optimization
problem resulting in an equal ripple. Design is accomplished by
specifying bandedges and a weighting function.
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