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Outline The z-Transform Linear Time-Invariant System Filter Design
Definition

The z-transform of a discrete-time signal x(n) is defined as the
power series

o0

X(z)= > x(nz™" (1)

N=—o0

where z is a complex variable, and hence, can be represented
as a magnitude and phase.

z = rel? 2)

It exists only for those values of z for which this series
converges.
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Outline Linear Time-Invariant System
Right-Sided Sequence

Filter Design

z
x(n)=a"u(n) <~ X((z)=-——"+ 4
(n) (n) (2) =15 (4)
This definition is not complete without stating the
region-of-convergence (ROC).
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Outline The z-Transform Linear Time-Invariant System Filter Design
left-Sided Sequence

1
=-a"u(-n-1 = X(z)=+—— 5
x(n)=-au(-n-1) < X@)=7;——5 6
This definition is not complete without stating the
region-of-convergence (ROC).
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\ ‘ :
g RE(Z)

6/27



Filter Design

Outline The z-Transform Linear Time-Invariant System

Poles and Zeros

If X(z) is rational function, then

X(2) = B(z) bo+biz7t+-- +byz™
AZ) agtazt4---+ayzN ©)
_ @Z—M+N (z-21)(z—22) (2 —2m)
Qo (z=p1)(z—p2) - (z—pn)

Z=21,25,...,Zy and p = p1,p2, ..., pn are the zeros and

poles of X(z), respectively.
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Outline The z-Transform (Linear Time-Invariant System ) Filter Design

A relaxed linear time-invariant system with input x(n), an
impulse response h(n), and an output y(n) can be expressed in

the z-domain as
Y (z) = H(z)X(z) @)

where H(z) is the transfer function of the system.
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Outline The z-Transform (Linear Time-Invariant System )

Difference Equation

N M
y(n) ==Y ay(n—k)+ > bx(n—k)
k=1 k=0

and hence,

Filter Design

(8)

(9)
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Outline The z-Transform (Linear Time-Invariant System ) Filter Design

Causality and Stability

Causality
A system is causal if the ROC is the exterior of a circle.

Stability
A system is stable if the ROC includes the unit circle.

Causal and Stable

A system is both causal and stable if the poles are inside the
unit circle. )

10/27



Outline The z-Transform (Linear Time-Invariant System )

Response to Complex Exponential

Using the convolution equation

y(n)= Y h(k)x(n-k)

k=—o0

If this system is excited by a complex exponential
x(n) =Ae"  —co<n<oo
where w is an arbitrary frequency, then

y(n) = AH(w)el“"

Filter Design

(10)

(11)

(12)
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If the ROC includes the unit circle, then

H(w) = H(@)l;=eie = ) h(n)e!" (13)

k=—o00
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Outline The z-Transform

(Linear Time-Invariant System )

Effect of Pole-Zero Location

Px

Zy

Filter Design

Figure: Frequency response using the location of poles and zeros

_product of distances from all zeros to L

~ product of distances from all poles to L

(14)
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Figure: Filter Specifications
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Outline The z-Transform Linear Time-Invariant System
By Pole-Zero Placement

@ Place zeros at locations you want the magnitude to decrease.

@ Place Poles at locations you want the magnitude to increase.
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Outline The z-Transform Linear Time-Invariant System
Transformation from Analog Filters

Use a transformation to convert analog filters to digital filters.
The bilinear transformation is frequently used.

2 (1—z71
=T <1+zl> 13)
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Outline The z-Transform Linear Time-Invariant System
Transformation from Analog Filters

The bilinear transformation causes a frequency warping
described by

QT
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Outline The z-Transform Linear Time-Invariant System
Transformation from Analog Filters

Some common analog filter includes
@ Butterworth: No ripple in either passband or stopband.
@ Type | Chebyshev: ripple in passband only.
@ Type Il Chebyshev: ripple in stopband only.
@ Elliptic: ripple in both passband and stopband.
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Outline

The z-Transform

Quantization Effects

Due to quantization, the location of poles and zeros will be
different than designed. This will cause the frequency response
to be modified. To minimize the effects of quantization, build
your filter as a cascade of second order systems.

Linear Time-Invariant System Filter Design
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Outline The z-Transform Linear Time-Invariant System Filter Design

A system using FIR filters has the output characterized by

M-1

y(n) = 3~ h(k)x(n k) (17)

k=0

FIR filters with symmetric and antisymmetric impulse
responses have linear phase.
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Outline

The z-Transform Linear Time-Invariant System Filter Design

FIR Filter Design Using Windows

© Compute the infinite impulse response from the an ideal impulse
response.

1 /" -

hg(w) = > /,,, Hg(w)e!*"dw (18)

© Compute a finite impulse response using a finite length window.
h(n) = ha(n)w(n) (19)

© Windows include rectangular, Hamming, Hanning, Bartlet,
Blackman, etc.

@ The wider the window, the sharper the cut-off.
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.re 10.2.3 Shapes of several window functions.

Figure: ©Proakis and Manolakis, Digital Signal Processing, 4th

Edition, Prentice Hall, 2007

Filter Design
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Outline The z-Transform Linear Time-Invariant System Filter Design
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Outline

The z-Transform Linear Time-Invariant System

FIR Filter Design Using Frequency-Sampling Method

© Design the required filter in the Frequency domain.
@ Sample the designed magnitude response.

© Add the linear phase.

© Compute the IDFT to obtain h(n).

Filter Design
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Outline The z-Transform Linear Time-Invariant System Filter Design
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Figure: Frequency sampling approach with not transition points (left)
and with transition points (right).
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Outline The z-Transform Linear Time-Invariant System Filter Design
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Figure: Magnitude response using frequency sampling approach with
not transition points (left) and with transition points (right).
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Outline The z-Transform Linear Time-Invariant System Filter Design

FIR Filter Design Using Equiripple Method

Uses the Alternation Theorem and solves an optimization
problem resulting in an equal ripple. Design is accomplished by
specifying bandedges and a weighting function.
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