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1 Signal is stochastic due to noise.

2 True spectral density is not known.

3 Signal is sampled and time limited resulting in loss of resolution,
frequency domain aliasing and spectral leakage.

4 Only one sample function may be available.
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True Autocorrelation and Power Spectral Density

If x(t) is stationary random process then,

Ensemble Autocorrelation

γXX = E [x∗(t)x(t + τ)] (1)

Power Spectral Density

ΓXX (F ) =

∫ ∞

−∞
γXX e−j2πFtdt (2)
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Time-averages

Using a single sample function,

Time Autocorrelation

RXX (τ) =
1

2T0

∫ T0

−T0

x∗(t)x(t + τ)dt (3)

If the process is ergodic, then we can use the time-average
autocorrelation RXX (τ), then

γXX (τ) = lim
T0→∞

RXX (τ)

= lim
T0→∞

1
2T0

∫ T0

−T0

x∗(t)x(t + τ)dt
(4)
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Overview

We can compute an estimate PXX (F ) of the true power spectral
density ΓXX (F ) by

Direct Method

PXX (F ) =

∫ T0

−T0

RXX (τ)e−j2πFτdτ

=
1

2T0

∣

∣

∣

∣

∣

∫ T0

−T0

x(t)e−j2πFtdt

∣

∣

∣

∣

∣

2 (5)

Indirect Method
Compute the autocorrelation function RXX (τ) then compute the
Fourier transform.
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Overview

The actual power spectral density is computed as

ΓXX (τ) = lim
T→∞

E [PXX (F )]

= lim
T→∞

E





1
2T0

∣

∣

∣

∣

∣

∫ T0

−T0

x(t)e−j2πFtdt

∣

∣

∣

∣

∣

2




(6)
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Sampled Signals

In practice we need to sample the continuous time signal in
order to estimate its power spectral density. Using a finite
duration sampled signal,

r ′XX (m) =
1

N − M

N−m−1
∑

n=0

x∗(n)x(n + m) (7)

and its Fourier transform is

P ′
XX (f ) =

N+1
∑

m=−N+1

r ′XX (m)e−j2πfm (8)
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Unbiased Estimate

E [r ′XX (m)] =
1

N − m

N−m−1
∑

n=0

E [x∗(n)x(n + m)]

= γXX (m)

(9)

This is known as unbiased estimate estimate of the true
(statistical) autocorrelation of x(n)
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Consistent Estimate

var [r ′XX (m)] ≈
N

[N − m]2

∞
∑

n=−∞

[

|γXX (n)|2 + γ
∗
XX (n − m)γXX (n + m)

]

(10)
lim

N→∞
var [r ′XX (m)] = 0 (11)

This is known as consistent estimate of the true autocorrelation
of x(n).
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An Alternative Way

For large lags the previous method has large variance. An
alternative way is to compute the estimate using

rXX (m) =
1
N

N−m−1
∑

n=0

x∗(n)x(n + m), 0 ≤ m ≤ N − 1 (12)

rXX (m) =
1
N

N−m−1
∑

n=|m|

x∗(n)x(n + m), −1 ≤ m ≤ 1 − N (13)
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An Alternative Way

This method has a biased given by

E [rXX (m)] =

(

1 −
|m|

N

)

γXX (m) (14)

which approaches γXX (m) as N goes to ∞. This is known as
asymptotically unbiased. The advantage is that the variance is
smaller.
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Using the Direct Method

PXX (f ) =
N−1
∑

m=−(N−1)

rXX (m)e−j2πfm

=
1
N

∣

∣

∣

∣

∣

N−1
∑

n=0

x(n)e−j2πfn

∣

∣

∣

∣

∣

2

=
1
N
|X (f )|2

(15)

and

E [PXX (f )] =
N−1
∑

m=−(N−1)

(

1 −
|m|

N

)

γXX (m)e−j2πfm (16)

which is a windowed version of γXX , i.e.,

γ̃XX =

(

1 −
|m|

N

)

γXX (m) (17)
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Remarks on Periodogram

Asymptotically unbiased.

Variance does not approach 0 as N → ∞, and therefore,
periodograms are not a consistent estimate of the true power
density spectrum.
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Bartlett Method

In order to reduce the variance.

Subdivide the sequence into smaller nonoverlappling segments.

Compute the periodogram of each segment.

Average the perodograms.

Frequency resolution

∆f =
0.9
M

(18)

where M is the number of segments
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Welch Method

A modified version of the Bartlett method by allowing overlap of
segments.

Window the data segments before computing the periodogram.

Frequency resolution

∆f =
1.28
M

(19)
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Blackman and Tukey Method

Window the autocorrelation sequence to reduce the effect of the
unreliable values at large lags.

Fourier transform the windowed autocorrelation.

Frequency resolution

∆f =
0.64
M

(20)

where 2M + 1 is the window size.
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Quality Measure

QA =
{E [PXX (f )]}2

var [PXX (f )]
(21)

Estimate Quality Factor Number of Computation
Bartlett 1.11N∆f N

2 log2
0.9
∆f

Welch (50% overlap) 1.39N∆f N log2
5.12
∆f

Blackman-Tukey 2.34N∆f N log2
1.28
∆f
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Sequence Modeling

Model the data sequence x(n) as the output of a linear system
characterized by

H(z) =
B(z)

A(z)
=

∑q
k=0 bkz−k

1 +
∑p

k=1 akz−k
(22)

and the corresponding difference equation

x(n) = −

p
∑

k=1

akx(n − k) +

q
∑

k=0

bkw(n − k) (23)

where w(n) is zero-mean white noise.
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Model Types

1 Pole-zero model is known as autoregressive moving average
(ARMA).

2 Only poles model is known as autoregressive (AR).

3 Only zeros model is known as moving average (MA).

AR models are very commonly used as they are less order than
MA, they are simple to represent, and they can represent
narrow peaks.
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