## **Important Remarks**

- Homework is due on Sept. 6th, 2011 at the beginning of class
- Start early and get help if you need it
- Start a new page per problem
- Show all the work
- Specify all the units
- Circle your answers
- Staple pages
- 1. Given Figure 1, perform the following
  - (a) Use Kirchoff's Current Law (KCL) to find  $I_1$  and  $I_2$ .
  - (b) Use Kirchoff's Voltage Law (KVL) to find  $V_1$ ,  $V_2$ , and  $V_3$ .
  - (c) Calculate power absorbed by each circuit element and perform a power balance check.



Figure 1: Schematic for Problem 1

2.  $V_1$  is providing 600Wto the circuit shown in Figure 2. Using KVL, KCL, Ohms Law (OL), and Watts Law (WL), label voltage reverences (+ and – polarity markers) for all circuit elements and solve for all unknown variables ( $V_1$ ,  $V_2$ ,  $V_3$ ,  $V_4$ ,  $V_5$ ,  $I_1$ ,  $I_2$ ,  $I_3$ ,  $I_4$ ,  $I_5$ ,

Figure 2: Schematic for Problem 2

3. For the following figures, reduce the circuit using what you know about resistors in series and parallel. Redraw each in fully reduced form (a single resistor, or a single resistor and voltage source for d and e), and label the equivalent resistance of your result. Hint: Leave your calculator out of this one and solve these algebraically.



(e)  $V_s \stackrel{12\Omega}{\longleftarrow} V_s \stackrel{12\Omega}$ 

4. For Figure 3, label current and voltage references (+ and - polarity markers for voltage and arrows for current). Calculate all unknown voltages and currents. Hint: Combine resistors until you can determine the value of Is (put away your calculator and use algebra!).



Figure 3: Schematic for Problem 4

- 5. Perform the following unit conversions. Do it in steps and show your work. Express your answer both in decimal numbers (like this: 0.00001) and in scientific notation (like this:  $1.0 \times 10^{-6}$ ).
  - (a) 0.035mV to Volts
  - (b)  $273k\Omega$  to  $\Omega$
  - (c) 15nF to μF (F is the abbreviation for Farads, our unit for measuring capacitance).
  - (d) 1725mA to kA