Important Remarks

- Homework is due on Sept. 6th, 2011 at the beginning of class
- Start early and get help if you need it
- Start a new page per problem
- Show all the work
- Specify all the units
- Circle your answers
- Staple pages

1. Given Figure 1, perform the following
(a) Use Kirchoff's Current Law (KCL) to find I_{1} and I_{2}.
(b) Use Kirchoff's Voltage Law (KVL) to find V_{1}, V_{2}, and V_{3}.
(c) Calculate power absorbed by each circuit element and perform a power balance check.

Figure 1: Schematic for Problem 1
2. V_{1} is providing 600 W to the circuit shown in Figure 2. Using KVL, KCL, Ohms Law (OL), and Watts Law (WL), label voltage reverences (+ and - polarity markers) for all circuit elements and solve for all unknown variables $\left(V_{1}, V_{2}, V_{3}, V_{4}, V_{5}, I_{1}, I_{2}, I_{3}, R_{1}, R_{3}\right)$. Note which rule you are using for each calculation and perform a power balance check.

Figure 2: Schematic for Problem 2
3. For the following figures, reduce the circuit using what you know about resistors in series and parallel. Redraw each in fully reduced form (a single resistor, or a single resistor and voltage source for d and e), and label the equivalent resistance of your result. Hint: Leave your calculator out of this one and solve these algebraically.
(a)

(b)

(c)

(d)

(e)

4. For Figure 3, label current and voltage references (+ and - polarity markers for voltage and arrows for current). Calculate all unknown voltages and currents. Hint: Combine resistors until you can determine the value of Is (put away your calculator and use algebra!).

Figure 3: Schematic for Problem 4
5. Perform the following unit conversions. Do it in steps and show your work. Express your answer both in decimal numbers (like this: 0.00001) and in scientific notation (like this: 1.0×10^{-6}).
(a) 0.035 mV to Volts
(b) $273 \mathrm{k} \Omega$ to Ω
(c) 15 nF to $\mu \mathrm{F}$ (F is the abbreviation for Farads, our unit for measuring capacitance).
(d) 1725 mA to kA

