Important Remarks

- Homework is due on Sept. 13th, 2011 at the beginning of class
- For all problems, keeping your work in fractions will produce easier, more accurate results.
- Start early and get help if you need it
- Start a new page per problem
- Show all the work
- Specify all the units
- Circle your answers
- Staple pages

1. Given figure below, find I and V using circuit reduction and other techniques.

2. Given the figure below, find I and V using circuit reduction and other techniques.

3. Given the figure below, $V_{s}=5 \mathrm{~V}, R_{1}=375 \Omega, R_{3}=25 \Omega$. With a multimeter we measure 1.25 V at N_{2} with respect to ground. Find the voltage at N_{1} (w.r.t. Gnd), R_{2}, V_{1}, I_{1}, and I_{2} using nodal analysis and other techniques.

4. Given the figure below, $V_{s}=10 \mathrm{~V}$. With a multimeter we measure (w.r.t. Gnd) 4 V at N_{1} and 7 V at N_{2}. Find V_{1} and V_{2}.

5. In the figure below, $I=8 \mathrm{~A}$. With a multimeter we measure (w.r.t. Gnd) 60 V at N_{2}. Using nodal analysis and other techniques, find V_{s}, V_{1}, V_{2}, and the measurement we would expect to get at N_{1} (w.r.t. Gnd).

6. The figure below shows a number of capacitors connected in series. Redraw this circuit as a single capacitor equivalent to this combination, and calculate its value $C_{e q}$.

7. The figure shows a number of capacitors connected in parallel. Redraw this circuit as a single capacitor equivalent to this combination, and calculate its value $C_{e q}$.

8. The figure below shows a number of capacitors connected in parallel. Redraw this circuit as a single capacitor equivalent to this combination, and calculate its value $C_{e q}$. Don't round off your answer.

9. The figure below shows a number of capacitors connected in series. Redraw this circuit as a single capacitor equivalent to this combination, and calculate its value $C_{e q}$.

