Important Remarks

- Homework is due on Sept. 17th, 2013 at the beginning of class
- For all problems, keeping your work in fractions will produce easier, more accurate results.
- Start early and get help if you need it
- Start a new page per problem
- Show all the work
- Specify all the units
- Circle your answers
- Staple pages

1. The figure below shows a number of capacitors connected in parallel. Redraw this circuit as a single capacitor equivalent to this combination, and calculate its value $C_{e q}$. Don't round off your answer.

2. The figure below shows a number of capacitors connected in series. Redraw this circuit as a single capacitor equivalent to this combination, and calculate its value $C_{e q}$.

3. For the circuit shown in Figure 1, assume $V s=5 \mathrm{~V}$ and R is unknown. In the lab we observe the charge curve for this circuit on an oscilloscope. We measure the following:
$V_{c}=0.5 \mathrm{~V} \quad$ when $t=50 \mu \mathrm{~s}$
$V_{c}=4.5 \mathrm{~V} \quad$ when $t=1150 \mu \mathrm{~s}$
(a) Using the 10\%-90\% rise time rule of thumb, calculate the time constant τ for this circuit.
(b) Using your results from part a, determine the value of R.
(c) Assume the switch has been in position A for a long time and switches to B at $t=0$. Plot V_{C} for $0<t<4 \tau$ using at least four points. Show all your work! Be sure to plot and confirm that your 10% values and 90% values match those used earlier. (Remember that the rule of thumb for the earlier calculation is an approximation).
(d) Assume the switch has been in position B for a long time and switches to A at $t=0$. Plot V_{C} for $0<t<4 \tau$ using at least four points. Show all your work! Be sure to plot and confirm that your 10% values and 90% values match those used earlier. (Remember that the rule of thumb for the earlier calculation is an approximation).

Figure 1: Circuit for problem 3
4. For the circuit shown in Figure 2: $\tau=2 \mathrm{~ms}, V_{s}=15 \mathrm{~V}$.
(a) Determine the value of C.
(b) Assume the switch has been in position A for a long time and switches to B at $t=0$. Plot $V_{\text {ceq }}$ for $0<t<4 \tau$ using at least four points. Show all your work!
(c) Assume the switch has been in position B for a long time and switches to A at $t=0$. Plot $V_{\text {ceq }}$ for $0<t<4 \tau$ using at least four points. Show all your work!

Figure 2: Circuit for problem 4

