Important Remarks

- Homework is due on Oct. 7th, 2014 at the beginning of class
- For all problems, keeping your work in fractions will produce easier, more accurate results.
- Start early and get help if you need it
- Start a new page per problem
- Show all the work
- Specify all the units
- Circle your answers
- Staple pages

The circuit shown in Figure 1 will be used for problems 1 and 2.

Figure 1:

1. In a simple RC circuit shown in the diagram above, the switch has been in position B for a long time and switches to A at $t=0$. We observe a capacitor charging with the standard exponential growth curve. At $t=37.5 \mathrm{~ms}$ we measure the resistor voltage V_{R} is 1.115 V . Determine the time constant τ for the circuit.
2. For the diagram above, we determine that the time constant τ is $7.00 \mu \mathrm{~s}$. We assume that the switch has been in position A for a long time and moves to position B at $t=0$. At a particular time after the switch has moved to position B, we observe that $I=-9.1 \mathrm{~mA}$, and $V_{c}=0.725 \mathrm{~V}$.
(a) Determine what time these observations occur.
(b) Solve for the capacitor value C.
3. For Figure 2, find the indicated values and express the function $v(t)$ in equation form:

Find: Peak voltage V_{p}, peak-to-peak voltage $V_{p p}$, Period T, frequency f, angular frequency ω, time shift $t_{\text {max }}$, and phase angle θ.

Figure 2:

Figure 3:
4. For Figure 3, find the indicated values and express the function $v(t)$ in equation form (be careful to note that the units for time on this graph are in 10^{-5} seconds).
Find: Peak voltage V_{p}, peak-to-peak voltage $V_{p p}$, Period T, frequency f, angular frequency ω, time shift $t_{\max }$, and phase angle θ.
5. For the equation below, find $V_{p}, V_{p p}, T, f, \omega, t_{\max }, \theta$; and graph the function for $0<t<5 / 16$ seconds. Remember to label you axes, units, and all relevant points on the graph. Hint: Try to keep your time divisions in terms of fractions rather than decimals, this will be easier to graph. This entire problem is easier without a calculator if you use fractions!

$$
\begin{equation*}
v(t)=25 \cos \left(8 \pi t-30^{\circ}\right) \tag{1}
\end{equation*}
$$

