EE 491: Homework 1

Problem 1:

Sketch the single-sided and double-sided spectra of

1. $x(t)=2 \sin \left(2 \pi t-\frac{1}{6} \pi\right)$
2. $y(t)=2 \sin \left(10 \pi t-\frac{1}{6} \pi\right)+\cos (2 \pi t)$

Problem 2:

Recall that

$$
\begin{equation*}
x(t)=\sum_{n=-\infty}^{\infty} X_{n} e^{j n \omega_{0} t} \tag{1}
\end{equation*}
$$

Show that

$$
\begin{equation*}
X_{n}=\frac{1}{T_{0}} \int_{t_{0}}^{t_{0}+T_{0}} x(t) e^{-j n \omega_{0} t} d t \tag{2}
\end{equation*}
$$

Hint: multiply both sides by $e^{-j m \omega_{0} t}$ and integrate over $\left[t_{0}, t_{0}+T_{0}\right]$, also remember that

$$
\int_{t_{0}}^{t_{0}+T_{0}} e^{j n \omega_{0} t} e^{-j m \omega_{0} t} d t= \begin{cases}T_{0} & , n=m \tag{3}\\ 0 & , n \neq m\end{cases}
$$

Problem 3:

Determine the average power of $x(t)=2 \sin 100 t$ using the following equations
1.

$$
\begin{equation*}
P=\frac{1}{T_{0}} \int_{T_{0}}|x(t)|^{2} d t \tag{4}
\end{equation*}
$$

and
2.

$$
\begin{equation*}
P=\sum_{n=-\infty}^{\infty}\left|X_{n}\right|^{2} \tag{5}
\end{equation*}
$$

Problem 4:

Prove the following theorems:

1. Superposition : $a_{1} x_{1}(t)+a_{2} x_{2}(t) \leftrightarrow a_{1} X_{1}(f)+a_{2} X_{2}(f)$
2. Time-Delay : $x\left(t-t_{0}\right) \leftrightarrow X(f) e^{-j 2 \pi f t_{0}}$
3. Modulation : $x(t) \cos \left(2 \pi f_{0} t\right) \leftrightarrow \frac{1}{2} X\left(f-f_{0}\right)+\frac{1}{2} X\left(f+f_{0}\right)$
