Lecture Notes on Stochastic Learning Automata
Lecture #2

Aly El-Osery

1 Reinforcement Schemes

In the previous lecture the basic operation of an SLA has been discussed.
In this lecture some of the reinforcement schemes are presented.

1.1 Reward-Inaction Reinforcement Scheme (Lp ;)

Assume that u(n) = ;.

If y(n) =0,
Pi(n+1) = (1 -a)Fi(n) + o, (1)
Pj(n+1) = (1 - a)Fi(n), (7 #1) (2)
If y(n) =1,
F’i(n"i_l) :Pi(n)a (Z_ L, am) (3)
where
P(0)= ... = Pa(0) = (4)

The above reinforcement scheme is e-optimal in the general stationary
random environment. The Lp_; has the drawback in the point that the
state probability vector P(n) is not altered when the environment response
at time n is penalty y(n) = 1. In the next subsection the general class of
absolutely expedient learning algorithms which take penalty inputs from the
random environment into account.



1.2 Absolutely Expedient Algorithm

Assume that u(n) = u;.

If y(n) =0,
Pi(n+1) = Bi(n) + Y _ &(P(n)), (5)
J#
Pj(n +1) = Pj(n) — §;(P(n)), (J #1) (6)
If y(n) =1,
Pi(n+1) = Pi(n) = Y _ Gi(P(n)), (7)
J#i
Pj(n +1) = Pj(n) + ¢;(P(n)), (J #1) (8)
Theorem 1

A necessary and sufficient condition for the stochastic automaton with the
above reinforcement scheme to be absolutely expedient is

&L(P(n) _ _ &m(P(n) _
P T o) $(P) (9)
GP(m) _ _ Cm(P(n) _
P T Pam 1o

where ¢(P) and 1(P) are arbitrary continuous functions satisfying

0<¢p(P) <1 (11)
and

P.
0<1/)(P)<min(1 J >, forallj=1,... ,m. (12)
— bj

The Lr_; algorithm is included in this class of algorithms, i.e., let £;(P(n)) =

aP;(n) and ¢;(P(n)) £ 0. As an example of the absolutely expedient algo-
rithm is the following nonlinear reinforcement scheme.

A



1.2.1 Nonlinear Reinforcement Scheme

Assume that u(n) = u;.

If y(n) =0,
Pin+1) = (1- a)Pi(n) +a,
Bt = (- 0B (#9)
If y(n) =1,
Rin-+1) = R) ~ ka(t = Rn) (2 )
P+ 1) =B +hani) (T2)  G#9
where

H = min[P(n),...,Py(n)],

0<a<l,

0 < ka <1,

2 Multi-Teacher Environment

— Up to this point we have discussed only a single-teacher environment.

— However, learning behaviors of stochastic automata under a single teacher
environment cannot be applied to problems where one input elicits multi-
responses from the environment having multi-criteria. Many practical
problems exhibits this behavior. For these cases multi-teacher environ-

ment needs to be considered.

— A basic model of a multi-teacher environment is shown in Figure 1.



lth Teacher

Y

jth Teacher

Yl

1st Teacher

Uj

Learning Automata

Figure 1: Stochastic automaton operating in [-teacher environment



— This case is a little different than the single-teacher environment in that
the different responses can be given by the different environments.

— In multi-teacher environment, an action of the automaton should receive
a greater reward from the [-teacher environment the more teachers agree
with it. This leads to the definition of average weighted reward.

Definition 1
The average weighted reward in the [-teacher environment W (n) is defined
as follows:

m

l
Wn) =" |Fn) [ Y jDY (21)
j=1

=1

where Déj is the probability that j teachers approve of the ith action u; of
the stochastic automaton.

2.1 Absolutely Expedient Nonlinear Reinforcement Schemes
in the General [-Teacher Environment (GAE)

When the output of the stochastic automaton at time step n is u; and
the responses from the multi-teacher environment are r rewards and [ — r
penalties, the state probability vector P(n) is transformed as follows:

P(n+1) = B(n) +(1- 1) w(Pm) = = 3 m(Pm),  (22)

J# J#
Pi(n+1) = Py(n) = (1= D (P) + 70y (P), (G #0)  (23)
where
R = Ley () (249)
il ) (e, (25)
Py(n) + n(Ps(n)) > 0, (26)



Pi(n) + > K(P(n)) >0, (27)
J#i
and
Pj(n) —n(P;j(n)) <1, (28)
forj=1,..., mandi=1,... ,m.
Theorem 2
If
P(P(n)) <0, (29)
$(P(n)) <0, (30)
and
$(P(n)) +¢(P(n)) <0 (31)

Then, the stochastic automaton with the reinforcement scheme defined by
the GAE algorithm is absolutely expedient in the general I-teacher environ-
ment.
2.1.1 Algorithm 1- (GLgr_r)
Let r; £ 0 and n; £ —laPj(n) for (j =1,... ,m), then

Pi(n+1) = (1 -ra)P;(n) +ra, (32)

Pj(n+1) = (1 —ra)Pj(n) (J #14) (33)
where 0 < la < 1.

2.1.2 Algorithm 2- (GNA)
Let n; £ —aPj(n) and k; £ —kaPj(n){H/(1—H)} for (j = 1,... ,m), then
the reinforcement scheme becomes
T H T
R+ ) = A — ke (1= 1) 1= Ry {2} + o (5) - Ao,
(34)
Pi(n+1) = Pi(n) + ka (1 - f) pmi-H_\_, (f) Pi(n)  (35)
! ! 1) 1-H 1)
where 0 < a < 1, H = min[P;(n),... ,Py(n)] and 0 < ka < 1.



3 Nonstationary Multi-Teacher Environment

— Up to this point, only multi-teacher environment is stationary and P-
model.

— In this section nonstationary multi-teacher environment from which stochas-
tic automata receives responses having any arbitrary number between 0

and 1 (S-model).
— In the nonstationary case the outputs are function of time and state.

— Depending upon the action u; and the n responses y;(n,q),... ,y*(n,q)
from the multi-teacher environment, the stochastic automaton changes
the probability vector P(n) by the reinforcement scheme.

— The objective of the stochastic automaton is to reduce the expectation of
the sum of the penalty strengths given by,

[=E Y yl(na) (36)
j=1

3.1 ¢eOptimal Reinforcement Scheme Under Nonstationary
Multi-teacher Environment (MGAE)

Let u(n) = u; and the responses from the [-teacher environment are (y}, ... ,y!).
Then,
P+ 1) =p + (M) S e +
J#i
AR - BT
- (1= 2 S e
J#i
1 !
P+ 1) =Rion) = (U e +
. 4 (38)
# (1 B (),
where
k1(P(n)) _ wm(P() _ oo
R A 2) (39)



Pi(n) ) (P (n)), (40)
Pj(n) +n(P;(n)) > 0, (41)
Py(n) + Y #(P(n)) >0, (42)
i#i
and
Pj(n) —n(Pj(n)) <1, (43)

for j =1,...,mand i = 1,... ;m. The MGAE scheme is a generalized
form of the GAE scheme given in the previous section where r is replaced
by (1= [y} +... +y].



Homework Problem:
Given two performance functions given below:

Ji(z) = —(z — 3)% + 10,
and
Jo(x) = =2z + 12.
Assume that only a noise corrupted observations are available as follows:
gj(z,w) = Jj(z) + wj, j=1,2

where w; is an additive white gaussian zero mean noise with variance 0.1.

1. Plot the two objective functions for x = 1,... ,5.

2. Design a stochastic learning automaton having five actions, i.e., u; €
{1,...,5}, to optimize (maximize) both of the optimization functions.

3. Plot the probabilities of all of the actions.

4. Compare the performance of GLg_ 1 and GN A schemes with different
values of «.

Hint:
Let 7(n) be a measurement of g;(z,w;), and

1

Uj(n) - n+1

(n# (n — 1) + 17 (n))

If uj(n) > 7/ (n — 1), then yf = 0, on the other hand if v/ (n) < ¥/ (n — 1),
then y/ =1



