

Hunt for the Black Box

May 4, 2006

Prepared For: New Mexico Institute of Mining and Technology
 Junior Design - Electrical Engineering 382
 Dr. El-Osery
 Dr. Wedeward

Prepared By: Group 1
 Michael Baltes
 Anthony Duran
 Steven Myers
 Jaisy Perreault
 Michael Pursley

 2

Abstract

This paper is a descriptive compilation of the work done by junior design group 1 in building a multi-robot
search assembly. With our given project specifications, in which our search field and black box (target)
dimensions are specified, the group decided to use an ultrasonic sensor and a digital compass in both our
localization and searching algorithms. In knowing the boundaries of our search, we're able to localize each
robot from the distances gathered from the ultrasonic sensor and the general direction of the compass. For
the searching algorithm we used a pseudo-coordinated pattern and to find the target we use our localization
and the known distances to each wall to find any anomalies in distance with the ultrasonic sensor.

Keywords: multi-robot searching, ultrasonic, digital compass, localization, pseudo-coordinated search
pattern

 3

Table of Contents

Item Page

Abstract……………………………………………………………………………………………….............2

List of Figures and Tables……………………………………………………………………………………4

Introduction…………………………………………………………………………………………………..5

Project Specifications………………………………………………………………………………………...6

Sensors………………………………………………………………………………………………………..7

Implementation…………………………………………………………………………………………….....8

 Communication……………………………………………………………………………………..9

 Localization………………………………………………………………………………………..10

 Searching Algorithm………………………………………………………………………………11

 Box Detection……………………………………………………………………………………...13

Graphical User Interface…………………………………………………………………………………….15

Interfacing and Power Circuitry…………………………………………………………………………….16

Power Sources for the Mobile Nodes……………………………………………………………………….17

Problems and Recommendations……………………………………………………………………………17

Configuration for the Hardware of the Robot……………………………………………………………….18

Hardware Mistakes………………………………………………………………………………………….20

Budget……………………………………………………………………………………………………….20

Conclusion…………………………………………………………………………………………………..21

References…………………………………...………………………………………………………………22

Appendix A: Screenshot of the GUI……………………………………………………………………….. 23

Appendix B: Final Code…………………………………………………………………………………….24

Main Basestation Code………………………………………………………………………...24

Northeast Node Main Code……………………………………………………………………25

Southwest Node Main Code…………………………………………………………………...40

Appendix C: Schematics…………..…………………………………..……………………………………56

 4

List of Figures and Tables

Figure 1: SR04 Ultrasonic Sensor .. 7
Figure 2: Dinsmore 1490 Digital Compass .. 7
Figure 3: Standard Servo .. 8
Figure 4: Localization Stage 0.. 10
Figure 5: Localization Stage 1.. 10
Figure 6: Localization Stage 2.. 10
Figure 7: Localization Stage 3.. 11
Figure 8: Localization Stage 4.. 11
Figure 9: Localization Stage 5.. 11
Figure 10: Localization Stage 6.. 11
Figure 11: Searching Algorithm Stages 1-3 ... 12
Figure 12: Searching Algorithm Stage 4 .. 12
Figure 13: Searching Algorithm Stage 5 .. 12
Figure 14: Searching Algorithm Stage 6 .. 13
Figure 15: Searching Algorithm Stage 7 .. 13
Figure 16: Searching Algorithm Stage 8 .. 13
Figure 17: Searching Algorithm Stage 9 .. 13
Figure 18: Box Detection Stage 1... 14
Figure 19: Box Detection Stage 2... 14
Figure 20: Box Detection Stage 3... 14
Figure 21: Box Detection Stage 4... 14
Figure 22: Box Detection Stage 5... 15
Figure 23: Box Detection Stage 6... 15
Figure 24: Box Detection Stages 7-9.. 15
Figure 25: Logic sequence used to determine the (x,y) coordinates of the node when traveling north…….16
Figure 26: Logic sequence used to determine node source, and check for bad data………………………..16
Figure 27: Start button control array with serial write and serial port close function..……………………..16
Figure 28: Voltage level converting circuit .. 17
Figure 29: PWM signal multiplier circuit... 17
Figure 30: Compass interface circuit with led indicators ... 17
Figure 31: First layer bottom view .. 19
Figure 32: First layer top view ... 19
Figure 33: Second layer bottom view... 19
Figure 34: Second layer top view ... 20
Figure 35: Budget ……….20

 5

Introduction

Starting in January, the electrical engineering junior design class was given the task to build and employ a
team of robots to find an object in a search field devoid of all other obstacles. Similar to, but much simpler
than, robot deployment for mine sweeping, our project is defined by the sensors chosen, the localization
schema, and the searching algorithm decided upon.

Due to the importance and implications of such technology, much research has been done on the efficiency,
both cost and power, of searching a field with single or multiple robots. Since our search field was
designated to be a 3 meter by 3 meter box, and with simplicity in mind, our group decided to use an
ultrasonic sensor for object detection since its max range is 3 meters. Since already using an ultrasonic
sensor for searching, we decided to also use it to help localize. With our dimensions known and a digital
compass telling us the general direction in which our robots are facing, we can figure out our position in the
box with the ultrasonic sensor telling us the distance to each wall.

First we will discuss the specific requirements for the project and then briefly go into the choices we made
and why, giving a general overview of the final product. Then we will go in depth about the hardware and
the software of the project, the final implementation code being Appendix A. We will then conclude with
the communication and integration of all the parts including the custom built graphical user interface.

 6

Project Specifications

Designed to test the knowledge and teamwork capabilities learned over the past 3 years as electrical
engineering students, our task revolves around networking, communication, and sensors. Required to
create a mobile sensor network with at least two mobile sensor nodes in the field that must localize
themselves and work independently (i.e. if one node dies, the other nodes must be able to continue with
their search), we were given 4 Micazs (basically a microcontroller with the ability to communicate through
RF), 3 motors, 3 h-bridges, an interface board for serial communication between the Micazs and a 250
dollar budget.

Our search field is a designated 3 meter by 3 meter box, with our target being a 30 centimeter by 30
centimeter by 30 centimeter box. Our nodes will be randomly placed in the box, must localize themselves
and must wirelessly communicate to the basestation their position. We are also required to be able to
display each nodes position on a GUI with a refresh time of at most 2 seconds and in the end also display
the position of the box. The nodes must then search the box for our target and once found tell the
basestation. The basestation will then tell the other nodes in the field the coordinates of the box who must
then drive to the given spot to confirm the find.

 7

Sensors

The three types of sensors we used to implement
our localization and searching algorithm were an
ultrasonic transmitter/receiver, a digital compass,
and a servo. All of these sensors each had their
own specifications to make them function, and it
was our job to meet each of them
simultaneously.

The first sensor used for our implementation was
the ultrasonic, more specifically the Devantech
SRF04 Ultrasonic Range Finder. According to
the manufacturer, Acroname, this ultrasonic
required 5 volts to function and pulled anywhere
from 30 milliamps to 50 milliamps. Its range
was from 3 centimeters to 300 centimeters (3
meters), which for our purpose was perfect.

Figure 1
SR04 Ultrasonic Sensor
www.acroname.com

At its maximum range of 3 meters, we found its
accuracy to be within 30 cm, or a 10 percent
error. It had great sensitivity for its price of
usually $25.00 being able to detect a 3
centimeter object from greater than 2 meters. In
order to function, the SRF04 required a 10
microsecond input trigger. We used input
capture to capture the reflection off the wall or
object, with the pulse width proportional to its
range. If the reflection was greater than 3 meters
away, it would return a 36 microsecond pulse.
This sensor was used for our distance readings
and object detection.

The second sensor used for our implementation
was the digital compass. Our digital compass of
choice, due to our budget restraints, was the
Dinsmore 1490 Digital Compass. According to
Dinsmore’s website, this sensor provides eight
directions of heading information by measuring
the earth's magnetic field using hall-effect
technology. The 1490 sensor is internally

designed to respond to directional change similar
to a liquid filled compass. It will return to the
indicated direction from a 90 degree
displacement in approximately 2.5 seconds with
no overswing. The 1490 can operate tilted up to
12 degrees with acceptable error. It is easily
interfaced to digital circuitry and
microprocessors using only pull-up resistors.
The compass was able to be powered from a
minimum of 5 volts and a maximum of 18 volts
and pulled approximately 30 milliamps of
current. The compass had only 8 distinct
directions: North, Northeast, East, Southeast,
South, Southwest, West, and Northwest, giving
our compass approximately 15 degree accuracy.

Figure 2
Dinsmore 1490 Digital Compass
www.dinsmoresensors.com

We found this to be somewhat of a hassle, but
will talk about how we handled the problem in
the actual implementation section. It was really
lightweight, only 2.25 grams, and was only 12.7
millimeters in diameter.

The third sensor used for the implementation of
our mobile node was the servo, more exactly the
Acroname Standard Servo. According to
Acroname, this servo was extremely important to
our design. On top of the servo was mounted the
ultrasonic sensor discussed earlier. The servo
had the ability to rotate 360 degrees, but for our
purpose we only needed it to rotate 180 degrees.
Due to its ability to do so, we were able to
prevent having our robot turn with its motors 180

 8

Figure 3
Standard Servo
www.acroname.com

degrees to take 3 ultrasonic readings and instead
leave our robot stationary as we rotated the
actual ultrasonic sensor using the servo. This
servo was hard to integrate into the code due to
its need to receive a signal every 20 ms in order
to function properly. If the servo did not receive
a signal in this amount of time, the internal
circuitry would shut down. We used pulse-width
in order to rotate the servo to its desired position.
This particular sensor required a minimum of 4.8
volts to run. It was very lightweight for its size,
only 1.44 ounces. Its ability to rotate quickly,
which according to spec was 0.23 seconds
through a 60 degree revolution, also was an
advantage to our final implementation.

The ability to make each of these sensors
function individually was a challenge, but was in
general easily done. The main obstacle was
trying to integrate all 3 into the same code
without having timing issues. It took lots of time
and effort in order to do so, but it is achievable
and was able to be done.

Implementation

Integrating each of the above sensors into our
code was a long, drawn-out process. As
mentioned earlier, implementing each of the
following sensors individually was the first step,
but trying to do so with all 3 in the same code
was a challenge.

Our initial plan of attack was to use the
basestation timer for the main timer in
controlling the nodes. First, we began with
motor control. We used the H-bridge manual

and a few logic statements in order to get the
robot to mobilize. Once we got the robot to
move, we realized that the speed was too fast
without pulse-width modulation. We foresaw a
problem with power consumption, so we used
the built-in PWM pins on the Micaz to set the
motor to our desired speed. After we were
satisfied with the movement of the robots, we
proceeded to integrate the digital compass into
our code.

The incorporation of the digital compass into our
existing code was relatively simple. We simply
set up general input/output pins on the Micaz to
read from the outputs of the compass. We found
immediately that the output on each pin of the
compass was not what we expected. Instead of
outputting a high signal when pointed in its
respective direction, the compass would actually
give a low output. For example, when facing
north, instead of outputting a high signal on the
north pin, it would instead output a zero and set
the other three pins high. With some basic logic
comparisons in our code, we were able to
combine what would be four separate readings
from the compass into a single hexadecimal
number. As mentioned previously, in order to
correct for compass accuracy and gear slippage
in the motor, we began to implement a correction
scheme. We used the hexadecimal number
received from the compass in order to auto-
correct our robot to head either north or south,
i.e. if it started to veer away from its desired
bearing, it would use our motor control code to
get back on track. This concluded our initial
compass code.

Next step was to add the ultrasonic code to our
existing code. It worked flawlessly as a single
unit, but once we tried to integrate it, we ran into
some disastrous problems. For some reason, our
ultrasonic readings began to be completely bogus
and our motors were not functioning as before.
After some debugging, we found the timing of
node was thrown off. While we were taking
ultrasonic readings, the basestation continued to
send messages to the node, causing an
interruption in the ultrasonic reading and giving
us false results. This was a major obstacle that
we had to troubleshoot. In order to solve this
problem, we decided to make the nodes as
independent as possible from the basestation.
All the major functions we were performing
using the basestation’s timer, we transferred over
to the node’s timer. As soon as we did this, we

 9

immediately saw better results, and the readings
from the ultrasonic were valid.

When we decided the ultrasonic was giving us
legitimate data, we started to create the first
stages of object detection. Our first plan of
attack was to setup our timer in such a way that
we would get ultrasonic readings every two
seconds. We ran into a few problems during this
step in our creation process. One major problem
with the ultrasonic sensor was that the readings it
would pick up while we were moving proved to
be inaccurate. To remedy this conflict of
movement and sensor functionality, we decided
it would be best to stop our chassis completely
every time we took an ultrasonic reading. To
execute this, we stopped the motor using a stop-
motor function. We also turned off the timer of
the micaZ to ensure that no other processes were
executing that would interrupt our ultrasonic.
Once our ultrasonic fired and received its echo
pulse, we restarted the timer and sent a packet
back to the basestation for GUI implementation.
The node use the reading to decide what future
tasks it would carry out. If the reading was
greater than 40 centimeters, the robot would
continue moving forward for two seconds, and
then repeat its ultrasonic process. However,
once the ultrasonic reading became less than 40
centimeters, the node would enter another
process that used our motor control functions to
turn right and move forward for a certain
distance. In the first stages of this object
identification, the node would then continue
trying to move north, even though there was a
wall in its way. Our main objective here was to
build a foundation for both our localization and
searching algorithms.

Our next major and probably most important
step in the node-building process was the
implementation of the servo into our functioning
code. We had found in the past that adding
another sensor to an already-functioning code
usually caused some problems. This instance
was no different from the other times. Once we
added the servo code, we tested and began to
realize that the servo was functioning properly,
but our ultrasonic readings became completely
inaccurate. Making our servo function was a big
step in our process due to its importance for our
searching and localization. This meant that
instead of rotating the entire chassis 180 degrees
to get 3 readings from our ultrasonic, all we had
to do was rotate our ultrasonic sensor 180
degrees with the servo. Without valid ultrasonic

readings, though, this would be useless to us.
After various hours of debugging, we finally
came to the conclusion that we were clearing our
pulse-width registers to accommodate the servo,
which in turn caused problems for the ultrasonic.
To accommodate this, we moved the servo code,
which was previously nested in the same task as
the ultrasonic, to another part of the code which
used the timer to function instead of an interrupt.

As soon as we did this, our code began to
function a lot better. Our ultrasonic readings
were valid once again, and we were rotating the
servo into 3 distinct positions without any
problems. We were now ready to implement our
algorithms for localization and searching, but
first we had to get our communication scheme
functioning.

Communication

Our initial communication scheme we had
worked on was using the basestation timer to
control the nodes and the nodes performing tasks
based on what messages they received and when
they received them. Both the node and the
basestation were sending and receiving
simultaneously. This was able to be done by
sending different message types. For our case,
the basestation was setup to send only type 4
messages and receive only type 5 messages. Our
node was setup to receive only type 4 messages
and send out type 5 messages only. As
mentioned previously, this did not work due to
timing issues mainly with the ultrasonic. We
switched over to use the node timer instead for
each of the individual nodes to make them as
independent as possible. At this point, we had
the basestation no longer sending out messages,
but only receiving messages of type 5. Doing
this solved the timing issues we were having
with our ultrasonic sensor. Leaving the
basestation in receive-mode was necessary for
updating the GUI. The basestation would
receive a message every time it received an
ultrasonic reading, which occurred
approximately every 1.2 seconds or whenever it
detected a wall. In this message consisted
distance measurements for each direction, the
current compass reading, search status (whether
the box had been detected), and node ID.

After we began to implement our localization
and searching algorithms, we began to realize
that our communication scheme was going to
need some modifications. In order for our

 10

searching algorithm to be coordinated, we
needed to setup a communication method where
our first node could send out messages only the
second node could receive and vice-versa.
Creating our timing for this was tricky due to our
robot movement being inconsistent. Initially we
had it set up where whenever a node came within
40 centimeters to the north or south wall, it
would send a message to the opposite node to
start its timer. This, after a few tests, did not
prove to be adequate due to the fact that the first
node did not have enough time to finish its tasks
and shut down before the second node reached
the opposite wall. In other words, the second
node would send out its startup signal for node 1
before node 1 had completed its tasks. To
overcome this, we setup a scheme where node 1
would tell node 2 to start its timer when it hit the
opposite wall. Node 2, however, did not instruct
node 1 to start its timer when it hit the opposite
wall, but rather waited until its ultrasonic
readings were completed before it sent out a
signal telling node 1 to start its timer. This
alleviated all the timing problems and prevented
both nodes from entering a point where both
nodes would deactivate simultaneously.

We also had to setup a communication sequence
where when one node found the black box in the
arena, it would send out a message of a specific
type to the opposite node. When this particular
type of message was detected by the other node
telling it specific coordinates, the receiving node
overrode its search algorithm and entered a
sequence of logic that drove it to match the other
nodes coordinates. When the coordinates were
matched and the desired location achieved, the
node shut down its timer and deactivated. Once
this communication scheme was made
consistent, we were now able to implement our
localization and searching algorithms.

Localization

Once this foundation was built, we decided to
begin our creation of the localization algorithm.
The use of the compass made our localization
scheme reasonably easy to implement.
Originally, the basic concept of our localization
was to orient one node north and the other south,
take three readings (north/south, east, and west),
rotate our node 180 degrees, and take three more
readings. This, however, worked better in theory
than it did in actuality, so we opted to take a

different approach. Instead, we started node 2
with its timer turned off, and oriented node 1
north. We then had node 1 drive until it hit the
north wall.

Figure 4
Localization Stage 0

Figure 5
Localization Stage 1

Upon hitting the north wall, the node then sent
out a signal that told node 2 to turn its timer on.
When node 2 received this signal, it proceeded to
orient itself south and start driving toward the
south wall.

Figure 6
Localization Stage 2

Node 1

Node 2

 11

Node 1 would proceed to turn east and drive
toward the east wall until it was within 40
centimeters from that wall. About the time this
was occurring, node 2 would begin approaching
the south wall.

Figure 7
Localization Stage 3

Once node 1 reached the east wall, it would
continue to turn south. When this was
happening, node 2 would proceed to turn west
once it came within 40 centimeters from the
south wall.

Figure 8
Localization Stage 4

Once node 1 was oriented south, using its servo,
it would take three ultrasonic readings (east,
south, and west). Node 1 would then shut its
timer off and wait for a signal from node 2 to
start its searching process. This would end the
localization process for this node. Node 2 at this
time would be approaching the west wall until it
was within 40 centimeters.

Figure 9
Localization Stage 5

Once node 2 was within 40 centimeters from the
west wall, it would proceed to turn north. Once
it was oriented north, it would take 3 ultrasonic
readings using its servo (west, north, and east),
and then send a signal to node 1 to start its timer
and start the searching process. Node 2 would
then shut off its timer and await a startup signal
from node 1. This would end the localization
process for node 2 and the overall localization of
the two nodes.

Figure 10
Localization Stage 6

Searching Algorithm

We had always planned on using a pseudo-
coordinated searching algorithm, but halfway
through the project, it was brought to our
attention that a random searching algorithm
would be easier to implement. However, we
soon found that if we put more than one node in
the arena at a time and let them roam, they’re
ultrasonic readings would interfere with one
another. So, we decided to switch back to our
coordinated searching algorithm which would
cause the robot to sweep the arena until it hit a
wall, then turn around and sweep in the opposite

 12

direction – the classic lawnmower effect. We
used our communication to allow one robot to
sweep individually, shooting off an ultrasonic
signal every 1.2 seconds (a time we ended up
implementing after many trials and lots of error),
while the other unused robot remained
stationary. The unused robot (initially node 2)
would remain in this state, until it received a
signal from the roaming node (initially node 1).
This signal occurs at different times, depending
on the node that is sending the signal. Node 1
sends the signal to start node 2 to as soon as
node 1 hits a north or south wall. This is done so
that node 2 will not get in the way of node 1’s
readings at anytime.

a)

b)

c)
Figure 11
Searching Algorithm Stages 1-3

Node 2 then starts heading in its respective
direction, also sending ultrasonic signals every
1.2 seconds. During this time, node 1 turns west,
and drives forward approximately 10
centimeters. This forward motion is done to
ensure that our robot doesn’t sweep the same
area more than once. Once it offsets itself, node
1 then takes three readings again, relocalizing
itself on the new southern wall.

Figure 12
Searching Algorithm Stage 4

As node 2 continues its searching, node 1
realigns itself north to south, but this time facing
the opposite direction it faced before hitting the
wall. It then takes another three readings,
verifying that the node is in the correct
placement on the grid, and thus creating less
error from bad initial reads on the first set of
readings.

Figure 13
Searching Algorithm Stage 5

After node 1 has taken all of its readings, its
timer is turned off, and it becomes the dormant
node. Node 2 then hits the north wall, and
prepares to turn itself around to sweep in the
other direction.

Node 1

Node 2

 13

Figure 14
Searching Algorithm Stage 6

It turns itself east, offsets itself 10 centimeters,
and takes three readings to localize itself again,
just as node 1 did earlier.

Figure 15
Searching Algorithm Stage 7

Node 2 then realigns itself south and takes
another three readings, once again to reduce
error that might occur in any sensor readings we
take in the turnaround process.

Figure 16
Searching Algorithm Stage 8

As soon as this second set of three readings is
completed, node 2 sends out a signal to node 1,
which starts node 1’s timer again and starts its
searching process over again.

Figure 17
Searching Algorithm Stage 9

The nodes then repeat this process of sweeping
the box until a possible detection is present in
one of the nodes.

Box Detection

The problem with using ultrasonic sensors over
infrared sensors lies within the box detection
process. When dealing with lasers, and photo
detection, it’s easy to put a light sensor on the
front of the node and paint the box black. This
way, the node knows that it encounters the box
when it picks up an absence of light. With our
ultrasonic readings, we had to make comparisons
of distances to determine whether or not we had
a box in our sweeping area. To do this, we had
our code save the distance each node recorded
every time we hit a north or south wall. This
distance was recorded into a variable named x1.

 14

Figure 18
Box Detection Stage 1

We then also saved the distances taken when the
node turned east or west. We placed these
distances in variables as shown in the diagram:

Figure 19
Box Detection Stage 2

We then saved one more reading, labeled y2,
after we realigned north/south. The four
distances saved were then added together and
averaged to reduce error in readings. This
averaged number was then compared to the total
distance of the arena. If the averaged numbers
summed to be less than 3 meters, the robot
detected a box and proceeded to run code to
verify the presence of the box.

Figure 20
Box Detection Stage 3

To verify the presence of the box, the robot
would drive in the box’s direction, until the node
was within 40 centimeters of the box. At this
time, the node would take three readings to
determine the coordinates of this possible box
detection.

Figure 21
Box Detection Stage 4

The node would then save the distance it was
from the box. This distance saved is marked as
the red arrow in the following diagrams. The
node then compares its east and west readings,
and turns towards the greater distance of the two.
This is done to ensure that our node doesn’t turn
towards a small distance and run straight into a
wall. After turning east or west, the node then
drives forward approximately 30 centimeters,

x1

x1
x2

y1

x1
x2

y1 y2

 15

which guarantees that we will clear the box from
the line of our next three readings.

Figure 22
Box Detection Stage 5

After clearing the box, the node takes three more
readings. It then compares the red arrow
distance with the corresponding blue arrow
distance. For instance, in the following diagram,
the red arrow distance is compared to the north
blue arrow distance. If the blue arrow distance is
greater than the red arrow distance + 30
centimeters, we know that we were originally at
the box. If not, the node knows that its original
assumption of the location of the box was false,
and it continues its searching algorithm.

Figure 23
Box Detection Stage 6

Once the node determines the placement of the
box, it reverses itself next to the box and sends
out the coordinates of the box to the other node.
The second node then drives until its coordinates
match those sent by the node that found the box.

a)

b)

c)
Figure 24
Box Detection Stage 7-9

Graphical User Interface

The Graphical User Interface (GUI) was written
in Labview 7.1. This symbolic programming
language is very useful for instrument control,
and was relativity easy to adopt for the project
requirements. It was determined that a simple x-
y grid system with (0,0) being located in the

 16

lower left corner would be the best design to
build the program around. This design
minimized the logic manipulations needed and
simplified the project.

First, data was taken from the serial port. It was
then ran through a series of filters that stripped it
of the Micaz’s packet formatting (first byte,
address byte, type byte, length byte, CRC byte,
and last byte) leaving just the data. At this point,
using the format chosen by the system
programmers the data block was broken apart
into the individual pieces of data (North distance,
East Distance, South distance, West distance,
current direction, search status, and node id).

Now the 4 cardinal directions, their distances,
and the current direction data were fed into a
logic sequence that varied based on the current
direction. With the zero point (0,0) located in the
lower left corner, it was found that to accurately
plot with respect to the north and east distances
that they had to be subtracted from the overall
size of the arena (300 cm was the value used).
An example of the logic sequence for data taken
while the direction was north is shown below.

Figure 25
Logic sequence used to determine the (x,y)
coordinates of the node when traveling north.

At this point the data was checked to see if it was
from node 1 or node 2. This was accomplished
with two comparators with one set to 1 and the
other comparator set to 2. If the node id matched
for the particular comparator than the new (x,y)
data was passed and plotted. If it did not match,
then a zero was passed. After the comparator, a
zero check was implemented to minimize bad
serial reads from affecting the plotting accuracy.
If a zero was detected, then using a feedback
node, the previous data plots were preserved.
Below is an example of this implementation.

Figure 26
Logic sequence used for the y coordinates of node 1 to
determine node source, and check for bad data.

With the data checked and associated with a
node it is passed to a multi-xy plot function. This
function worked well for this project. It was
easily configurable to match the 300 x 300 cm
arena, and allowed for on the fly changes to the
way the nodes were displayed.

The required start button was implemented in
Labview, but due to time restrictions was never
implemented on the Micaz side, and therefore
could not be tested. The idea behind the
implementation was that an array would be
created. The bytes that were prone to change
would be set as variables, and the ones that were
constants were preset. The variables would be
taken from logic that set them based on what
type of message it was, what the destination
address was, the length of the data, the data to be
sent, and the CRC byte. The example below is
the array that the system programmers agreed
would be used to start the nodes on their search
sequence.

Figure 27
Start button control array with serial write and serial
port close functions.

Interfacing and Power Circuitry

The circuitry required to power and interface the
different sensors for this project was very basic.
The first circuit covered will be the 5 volt
regulator. This circuit consists of an LM7805
T0-220 package voltage regulator and heat sink,
a 1 µF electrolytic capacitor, and a 0.1 µF
electrolytic capacitor.

The second circuit to be discussed is the level
converting circuit. Through testing, it was
determined that the 2.6-3.3 volt signal from the

 17

Micaz was not sufficient to drive the trigger line
of several of the sensors. To remedy this, it was
decided to implement a 3-to-5 volt level
converter. This circuit consists of an NPN and a
PNP transistor in the configuration shown below.
The circuit is powered off of the 5 volt regulator,
has an input that is connected to the Micaz, and
an output that is connected to the input of the
desired sensor.

Figure 28
Voltage level converting circuit.

The third circuit to be discussed is the Pulse
Width Modulation (PWM) signal multiplier.
During the integration process it was determined
that the project needed more PWM signals than
were available on the Micaz. To remedy this
problem, it was decided to control the motors
with a single PWM channel. The requirements
were that each motor would receive the same
PWM signal, and either motor or both could be
disconnected from the PWM signal. This was
accomplished with a simple dual AND gate. The
PWM signal was connected into an input on both
AND gates, and a General Purpose Input/Output
(GPIO) pin from the Micaz was connected to
each of the remaining inputs to the AND gates.
The GPIO pins enabled or disabled the PWM
signal to the individual motors. Below is an
example of how the circuit was wired.

Figure 29
PWM signal multiplier circuit.

The final circuit to discuss is the compass
interface board. This simple board allows for
easy powering, grounding, and connecting the
output lines to jumper wires. In addition, to give
a visual aid, leds were connected to the output
lines. The example below show how this board
was wired.

Figure 30
Compass interface circuit with led indicators.

Power Sources for the Mobile
Nodes

The main power source for the mobile nodes was
chosen to be a 9.6 volt NiMH 1250 mAh battery,
which is regulated down with the 5 volt regulator
circuit described above. This battery required
pressure contacts on its side for proper hookup.
In addition, the Micaz was independently
powered by two AA batteries. As a last minute
addition, a 4xAA battery pack was added. Its
purpose was to provide independent power for
the servo.

Problems and Recommendations

Throughout this project the group ran into
numerous problems. Detailed here are the
problems that were faced and how they were
overcome, or recommendations on how to
possibly overcome these problems.

Power:

Behavior: This problem was detected during the

integration phase when the servo was
added to the chassis. The behaved
randomly if at all when it was

 18

connected to the 5 volt regulator
circuit, and work to specification
when it was connected to its own
power source.

Cause: Power calculations were done
incorrectly. One possibility is that the
lab power supply was inadequate to
power the motors, or it was
incorrectly displaying the current
draw.

Solution: Possible solution is to replace the 1
amp 7805 regulator with a 1.5 amp or
even a 3 amp version of the 7805. If
weight is not an issue, use of
additional battery pack will resolve
the issue.

Wiring:

Behavior: Random behavior of individual or all

systems on the node. Node was
functioning, then stops between test
runs.

Cause: Usually a wire or group of wires was
knocked loose during handling. This
is common when removing the Micaz
for re-programming, transporting the
node between the bench and the test
arena, bumping the node, weak/worn
wires/contacts, and weak connections
to common ground points.

Solution: Use caution when handling the node.
Make a printed circuit board with all
necessary connections to minimize
jumper wires between boards. Make
sturdy wire harnesses. These make
re-wiring the node much easier,
reduce time spent testing each
individual wire, clean up the node,
and reduce the chance of a single
loose wire.

GUI(plotting):

Behavior: While program is plotting the location

of the nodes it occasionally plots the
node inaccurately.

Cause: There are several possible causes for
this behavior. One is that there was a
bad serial port read that resulted in
junk data. Another possible cause is
that the simple logic used to
determine the (x,y) coordinates is
insufficient in certain cases. Another
possible cause is that the program

lacks sufficient data from the Micaz
to accurately plot the nodes location.

Solution: There are not really any simple
solutions to this problem. Data taken
from the serial port is bound to
occasionally be out of sync. More
detailed checks could be added to the
data before processing. As for the
faulty logic for certain cases, those
cases need to be determined and
special cases added to specifically
handle them. A known problem is the
lack of data from the Micaz. The only
way to handle this is to add several
more data reading into the behavior
code of the node.

Flat tires:

Behavior: Node seems to veer, and tires appear

close to flat.
Cause: Weight of the node is improperly

distributed, and reaching the nodes
limit.

Solution: To stiffen up the tires, fill with 6mm
plastic AirSoft rounds. Be careful not
to overfill. Note that after fill tires
weight may need to be readjusted.

Configuration for the Hardware

of the Robot

For the design of our nodes, we tried to keep it as
simple as possible. We started with a 12x15 cm
base of Plexiglas with squares cut out of the back
for the wheels attached to the motor. The center
of the base was where we put the battery. The
batteries power connectors also worked as a way
to keep the battery attached to the node. In the
back of the base was a single wire bent so that
the node was sitting flat with the middle of the
wire touching the ground and the two ends of the
wire coming up and screw into the base. This
made it so that our node had a tripod base with
the two motor wheels in front and the wire in the
back.

We used a second layer of Plexiglas that was
15x15 cm that was attached with three spacers
for stability, two near the wheels and one near
where the wire touches the ground. We used a
standard servo, which we attached in the front of
the node. On top of the servo was the ultrasonic
sensor, which was centered so that it would be

 19

able to take readings from in front of the node as
well as to the left and right. Just behind the
servo was a foot tall length of metal on top of
which was the digital compass. The digital
compass had to be put at least a foot above the
node because the compass would read some
interference from the rest of the node.

The back of the node is where the MicaZ was
attached to the connector board which allowed us
to separate all the information going from the
MicaZ to all of the other parts via wires.
Through the wires, the MicaZ is connected to the
servo, compass, ultrasonic sensor, and H-bridge.
The H-bridge is located on the bottom side of the
second layer just under where the MicaZ is
located. The H-bridge is also connected to the
motor, which allows the signal from the MicaZ
move the motor. The H-bridge is also connected
to a five-volt regulator, which is located on the
topside of the second layer right next to the
MicaZ.

Figure 31

Figure 32

Figure 33

 20

Figure 34

Hardware mistakes

There are a few things that would have made the
chassis better. One of these things is the back
wire. The wire did not allow for shock
absorbing since it was a very rigid wire, so any
vibrations the node felt shook the entire node.
Vibrations were bad because the part that felt the
vibrations the most because of distance from the
bottom was the compass and it was the part that
needed to remain level. Having either shock
absorbing material on the back or having two
back wires could have lessened the vibrations of
the node. The two back wires would have made
it so that the robot would not shake easily from
side to side due to its tripod design.

The wires were also an issue since they were
everywhere and had a tendency to come
unconnected from their connectors, which
caused several problems with troubleshooting.
This could have been remedied with better wires
and also taking out some of the bad wiring that
came with some of the circuitry originally.

Final Budget

ITEM QTY
 TOTAL
PRICE

Ultrasonic Sensor 2 $25 $50
Servo 3 $10.90 $32.70
Compass 3 $13 $44
Heat Sinks 3 $1.67 $5.41
Battery 2 $11.75 $23.51
Battery boxes 2 $3.08 $6.08
Interface Boards 2 $6.50 $13
Machine shop $4
Misc. Circuit Board
Parts $37.54
Shipping costs $1.74

Total $217.98
Left $32.02

Figure 35
Final Budget

 21

Conclusion

Our final status on the project is almost
complete. When compared to the beginning of
the semesters project specifications we felt that
we were only truly lacking on two of the points.
We had yet to implement a start button on our
GUI that would start the entire event and our
nodes had yet to become independent. The GUI
was thrown together within the last week, which
we really have no excuse for, and the nodes had
to communicate to each other to start moving.
This was so they were not firing the ultrasonic at
the same time and interfering with each other’s
readings, thusly making them reliant on the
signal to start moving. Both problems we feel,
given a couple more days, we could have
implemented.

During the semester we ran into quite a few
problems that subsequently put us behind
schedule. The integration of the entire project
took us longer than we expected, and there were
quite a few days that we felt we made no
progress at all. We had the ultrasonic code

working by itself, as well as the servo, but when
trying to combine them all together had quite a
few timing/coding problems. Things we
believed should work in theory ended up
interfering with our other subsystems. During
the last week we had problems with one of our
chassis, making it necessary to change our three-
node system to a two-node system. The wiring
of our systems ended up being a large problem
for us since a lot of the time we spent trying to
debug the code was actually a wiring problem.
Given more time we would have built wiring
harnesses, alleviating most of our wiring
problems, making our chassis look neater, and
make debugging simpler.

Overall the project was stressful, challenging and
demanding. As a group we feel we have
accomplished a lot, both in terms of the actual
project and in terms of engineering skills. We
learned that when scheduling tasks to
overestimate the time of completion, redistribute
resources according to priority and timeline, and
that planning is the most important part of a
project

 22

References

[1] (2006, Feb) Space and Naval Warfare Systems Center: Factors Determining Cost-Optimal Design.
[Online] Available: http://www.spawar.navy.mil/robots/research/manyrobo/costfactors.html

[2] (2006, Feb) Space and Naval Warfare Systems Center: Models for Coordinated and Random Searches.
[Online] Available: http://www.spawar.navy.mil/robots/research/manyrobo/searchmodels.html

[3] (2006, Feb) Exact String Matching Algorithms. [Online] Available: http://www-igm.univ-
mlv.fr/~lecroq/string/index.html

[4] (2006, Feb) Big O Notation. [Online] Available: http://en.wikipedia.org/wiki/Big_O_notation.
[5] C. Z. Janikow, “Adaptable Constrained Genetic Programming: Extensions and Applications,” NASA

Summer Faculty Fellowship Program 2004, vol. 1 and 2, pp 11-1 - 11-7, August 2005.
[6] B. Joshi, D. Morris, N. White, and R. Unal, “Optimization of Operations Resources via Discrete Event

Simulation Modeling,” 6th AIAA/USAR/NASA/ISSMO Symposium on Multidisciplinart Analysis and
Optimization, September 1996

[7] (2006, Feb) Genetic Algorithms and Evolutionary Computation. [Online] Available:
http://www.talkorgins.org/faqs/genalg/genalg.html#examples:robotics

[8] S. Koenig, B. Szymanski and Y. Liu, “Efficient and Inefficient Ant Coverage Methods,” Annals of
Mathematics and Artificial Intelligence - Special Issue on Ant Robotics, vol. 31, pp. 41-76, 2001

[9] W. Burgard, M. Moors, C. Stachniss and F. Schneider, “Coordinated Multi-Robot Exploration,” IEEE
Transactions on Robotics, vol. 21, pp.376-378, 2005.

 23

Appendix A
Screenshot of the GUI

 24

Appendix B
Final Code

Main Basestation Code

// $Id: ReceiveDataM.nc,v 1.0 4/10/2005$
/*
 * Authors: Aly El-Osery
 Steven Myers
 Anthony Duran
 * Date last modified: 4/10/2005
 *
 */

/**
 * @author Aly El-Osery
 Steven Myers
 Anthony Duran
 */

includes IntMsgg;

module ReceiveDataM {
 provides interface StdControl;
 uses {
 interface ReceiveMsg;
 interface MsgOutput;
 interface StdControl as CommControl;
 interface Leds;
 }
}
implementation {

 command result_t StdControl.init() {
 call Leds.init();
 call Leds.redOff();
 call Leds.yellowOff();
 call Leds.greenOff();
 return call CommControl.init();
 }

 command result_t StdControl.start() {
 return call CommControl.start();
 }

 command result_t StdControl.stop() {
 return call CommControl.stop();
 }

 event TOS_MsgPtr ReceiveMsg.receive(TOS_MsgPtr m) {
 IntMsgg *message = (IntMsgg *)m->data;
 call Leds.redToggle();
 call MsgOutput.output(*message);

 return m;

 25

 }

 event result_t MsgOutput.outputComplete(result_t success) {
 return SUCCESS;
 }

}

Northeast Node Main Code
/* Authors: Aly El-Osery
 Steven Myers
 Anthony Duran
*/

includes IntMsgg;

module RfmToIntM {
 provides interface StdControl;
 uses{
 interface StdControl as CommControl;
 interface Leds;
 interface ReceiveMsg as ReceiveIntMsg;
 interface SendMsg as Send;
 interface Timer;
 }
}

implementation{
 TOSH_ASSIGN_PIN(PW8, G, 0);
 TOSH_ASSIGN_PIN(PW9, G, 1);
 TOSH_ASSIGN_PIN(PW10, G, 2);
 uint16_t x1, x2, y1, y2, avgY;
 int check;
 int box;
 int hookerbot;
 int state;
 int sense;
 int thing;
 int north;
 int south;
 int stopping;
 int goingnorth;
 int goingsouth;
 int otherway;
 int limit;
 int servo;
 int stoprobot;
 int increase;
 int bling;
 int reversing;
 int temp;
 int hope;
 int servohope;
 int begin;
 int drunk;
 int wall;
 int detect;

 26

 int firstime;
 int verify;
 int timing;
 bool pending;
 struct TOS_Msg data;
 IntMsgg *distmsg = (IntMsgg *)data.data;
 int first; //# of times trigger function called
 uint16_t widthcnt; //65534 counter for trigger
 int start;
 uint16_t way;
 uint16_t comp;
 uint16_t nine;

 command result_t StdControl.init() {
 x1 = x2 = y1 = y2 = 0;
 avgY = 0;
 box = 0;
 check = 0;
 state = 0;
 stoprobot = 0;
 sense = 0;
 first = 0;
 servo = 0;
 widthcnt = 0;
 start = 0;
 thing = 0;
 drunk = 30;
 increase = 0;
 wall = 0;
 bling = 0;
 temp = 0;
 goingsouth = 0;
 goingnorth = 0;
 limit = 0;
 stopping = 0;
 begin = 0;
 detect = 0;
 timing = 0;
 hope = 0;
 servohope = 0;
 hookerbot = 0;
 firstime = 0;
 verify = 0;
 north = 0;
 south = 0;
 reversing = 0;
 way = 0x000e;
 call CommControl.init();
 call Leds.init();
 return SUCCESS;
 }

 command result_t StdControl.start() {
 call CommControl.start();
 return call Timer.start(TIMER_REPEAT, 300);
 }

 27

 command result_t StdControl.stop() {
 call Timer.stop();
 return call CommControl.stop();
 }

event TOS_MsgPtr ReceiveIntMsg.receive(TOS_MsgPtr m) {

 IntMsgg *message = (IntMsgg *)m->data;

 if(message->avgY == 0){
 call Timer.start(TIMER_REPEAT, 300);
 }
 else if(message->avgY == 1){
 call Timer.start(TIMER_REPEAT, 300);
 }
 else if(message->avgY == 2){
 box = 3;
 otherway = message->dir;
 goingnorth = message->north;
 goingsouth = message->south;
 call Timer.start(TIMER_REPEAT, 300);
 }

 return m;
}

task void Forward(){
 TOSH_CLR_PW0_PIN();
 TOSH_SET_PW2_PIN();
 TOSH_CLR_PW6_PIN();
 TOSH_SET_PW4_PIN();
}

task void TurnRight(){
 TOSH_CLR_PW0_PIN();
 TOSH_CLR_PW2_PIN();
 TOSH_SET_PW6_PIN();
 TOSH_CLR_PW4_PIN();
}

task void TurnLeft(){
 TOSH_SET_PW0_PIN();
 TOSH_CLR_PW2_PIN();
 TOSH_CLR_PW6_PIN();
 TOSH_CLR_PW4_PIN();
}

task void MotorStop(){
 TOSH_CLR_PW0_PIN();
 TOSH_CLR_PW2_PIN();
 TOSH_CLR_PW6_PIN();
 TOSH_CLR_PW4_PIN();
}

task void ReverseThatBiatch(){
 TOSH_SET_PW0_PIN();
 TOSH_CLR_PW2_PIN();

 28

 TOSH_SET_PW6_PIN();
 TOSH_CLR_PW4_PIN();
}

task void Print_Robot(){
 call Send.send(2, sizeof(IntMsgg), &data);
}

task void Print_BaseStation(){
 call Send.send(0, sizeof(IntMsgg), &data);
}

task void BoxFound(){
 box = 2;
 distmsg->avgY = box;
 if(reversing <= 9){
 post ReverseThatBiatch();
 reversing++;
 }
 else{
 post MotorStop();
 distmsg->north = north;
 distmsg->south = south;
 post Print_Robot();
 post Print_BaseStation();
 call Timer.stop();
 }
}

task void SetupSonar(){

 int temp2 = 0;
 //Left Wheel
 OCR3CH = 0x00;
 OCR3CL = 0x00;
 TCCR3B = 0x42; //set clock with 8 prescaler, about
912.5kHz,
 TCCR3A = 0x00;

 DDRE = 0x80; //Set PE7 as input
 DDRC = 0x00; //set PC7 as output

 atomic{
 TOSH_SET_PW1_PIN(); //sets pw6 high
 while(temp2 < 250){
 temp2++;
 }
 temp2 = 0;
 TOSH_CLR_PW1_PIN();
 }
 SREG = 0x80; //Global Interrupt enable (pg9)
 ETIMSK = 1<<TICIE3; //enable Timer3, capture, and
interrupt
 return;
}

 29

task void BoxMove(){
 if(increase == 4){
 increase = 0;
 post MotorStop();
 call Timer.stop();
 post SetupSonar();
 }

 else{
 OCR3AH = 0x46; //sets period to ~20ms
 OCR3AL = 0x50;
 OCR3CH = 0x2A;
 OCR3CL = 0x30;
 TCCR3A = 0x2B;
 TCCR3B = 0x5A;
 increase++;
 if(way == 0x000e || way == 0x000c || way == 0x0006){
 if(distmsg->north >= goingnorth){
 post Forward();
 }
 else if(otherway == 0x000d || otherway == 0x000c ||
otherway == 0x0009){
 if(limit == 0){
 if(start <= 3){
 OCR3CH = 0x20;
 OCR3CL = 0x00;
 post TurnLeft();
 start++;
 }
 else{
 limit = 1;
 }

 }
 else if(distmsg->north > 10){
 post Forward();
 }
 else if(distmsg->north <= 10){
 post MotorStop();
 }
 }

 else if(otherway == 0x0007 || otherway == 0x0006 ||
otherway == 0x0003){
 if(limit == 0){
 if(start <= 3){
 OCR3CH = 0x20;
 OCR3CL = 0x00;
 post TurnRight();
 start++;
 }
 else{
 limit = 1;
 }

 }

 30

 else if(distmsg->north > 10){
 post Forward();
 }
 else if(distmsg->north <= 10){
 post MotorStop();
 }
 }
 }

 else if(way == 0x000b || way == 0x0009 || way == 0x0003){
 if(distmsg->south >= goingsouth){
 post Forward();
 }
 else if(otherway == 0x000d || otherway == 0x000c ||
otherway == 0x0009){
 if(limit == 0){
 if(start <= 3){
 OCR3CH = 0x20;
 OCR3CL = 0x00;
 post TurnRight();
 start++;
 }
 else{
 limit = 1;
 }

 }
 else if(distmsg->south > 10){
 post Forward();
 }
 else if(distmsg->south <= 10){
 post MotorStop();
 }
 }

 else if(otherway == 0x0007 || otherway == 0x0006 ||
otherway == 0x0003){
 if(limit == 0){
 if(start <= 3){
 OCR3CH = 0x20;
 OCR3CL = 0x00;
 post TurnLeft();
 start++;
 }
 else{
 limit = 1;
 }

 }
 else if(distmsg->south > 10){
 post Forward();
 }
 else if(distmsg->south <= 10){
 post MotorStop();
 }
 }
 }

 31

 }
}

task void BoxTest(){

 if(firstime == 0 || firstime == 2){
 post MotorStop();
 servohope = 1;
 if(timing < 7){
 if(timing == 0){
 OCR3AH = 0x46; //sets period to
~20ms
 OCR3AL = 0x50;
 TCCR3B = 0x5A; //set clock with
8 prescaler, about 912.5kHz,
 TCCR3A = 0x2B;
 hope++;
 }
 if(hope == 1 && timing == 0){
 // Left
 OCR3B = 0x07be; //551us
 }
 else if(hope == 2 && timing == 0){
 // Neutral
 OCR3B = 0x04da; //1.25ms
 }
 else if(hope == 3 && timing == 0){
 // Right
 OCR3B = 0x01fb; //2.15ms
 }
 else if(hope == 4 && timing == 0){
 OCR3B = 0x04da;
 }
 timing++;
 }
 else{
 if(hope == 4){
 sense = 0;
 hope = 0;
 temp = 0;
 if(firstime == 0){
 firstime = 1;
 }
 else{
 firstime = 3;
 }
 }
 timing = 0;
 call Timer.stop();
 post SetupSonar();
 }
 }

 else if(firstime == 1){
 if(verify <= 3){
 if(way == 0x000e){
 hookerbot = way;

 32

 detect = distmsg->north;
 if(distmsg->west > distmsg->east){
 way = 0x0007;
 post TurnLeft();
 }
 else{
 way = 0x000d;
 post TurnRight();
 }
 }
 else if(way == 0x000b){
 hookerbot = way;
 detect = distmsg->south;
 if(distmsg->west > distmsg->east){
 way = 0x0007;
 post TurnRight();
 }
 else{
 way = 0x000d;
 post TurnLeft();
 }
 }
 verify++;
 }
 else{
 post Forward();
 if(verify >= 12){
 verify = 0;
 firstime = 2;
 }
 else{
 verify++;
 }
 }
 }

 else if(firstime == 3){
 if(hookerbot == 0x000e){
 if(north >= (detect + 30)){
 post BoxFound();
 }
 else{
 box = 0;
 sense = 0;
 servohope = 0;
 avgY = 0;
 call Timer.start(TIMER_REPEAT, 300);
 }
 }
 else if(hookerbot == 0x000b){
 if(south >= (detect + 30)){
 post BoxFound();
 }
 else{
 box = 0;
 sense = 0;
 servohope = 0;

 33

 avgY = 0;
 call Timer.start(TIMER_REPEAT, 300);
 }
 }
 }
}

event result_t Timer.fired(){
 TOSH_MAKE_PW8_INPUT();
 TOSH_MAKE_PW9_INPUT();
 TOSH_MAKE_PW5_INPUT();
 TOSH_MAKE_PW7_INPUT();
 distmsg->val2 = 0x01;
 distmsg->dir = (0x0001 & (TOSH_READ_PW8_PIN() * 0x00FF)) |
(0x0002 & (TOSH_READ_PW9_PIN() * 0x00FF)) | (0x0004 &
(TOSH_READ_PW5_PIN() * 0x00FF)) | (0x0008 & (TOSH_READ_PW7_PIN() *
0x00FF));
 comp = distmsg->dir & way;
 nine = comp | way;
 TOSH_SET_PW3_PIN();
 TOSH_SET_PW10_PIN();
 TOSH_MAKE_INT0_OUTPUT();
 TOSH_MAKE_INT1_OUTPUT();

 if(begin == 0){
 OCR3AH = 0x46; //sets period to ~20ms
 OCR3AL = 0x50;
 OCR3B = 0x04da; //1.25ms
 TCCR3A = 0x2B;
 TCCR3B = 0x5A;
 }

 if(drunk == 30){
 distmsg->north = 100;
 drunk = 0;
 }

 if(distmsg->dir == way){
 if(wall == 1){
 temp = 10;
 sense = 4;
 wall = 0;
 }
 else{
 state = 4;
 }
 }
 else if(comp == 0x000c){
 state = 3;
 }
 else if(comp == 0x0003){
 state = 3;
 }
 else if(comp == 0x0006){
 state = 2;
 }
 else if(comp == 0x0009){

 34

 state = 2;
 }
 else if(nine == 0x000e){
 state = 3;
 }
 else if(nine == 0x000b){
 state = 2;
 }

 if(way == 0x000d){
 if(distmsg->dir == way){
 state = 4;
 }
 else if(comp == 0x000c){
 state = 2;
 }
 else if(comp == 0x0009){
 state = 3;
 }
 }

 if(box == 3){
 post BoxMove();
 }

 else if(box == 2){
 post BoxFound();
 }

 else if(sense == 4){

 post MotorStop();

 if(temp == 10){
 if(bling < 7){
 if(bling == 0){
 OCR3AH = 0x46;
 //sets period to ~20ms
 OCR3AL = 0x50;
 TCCR3B = 0x5A; //set
clock with 8 prescaler, about 912.5kHz,
 TCCR3A = 0x2B;
 servo++;
 }

 if (servo == 1 && bling == 0){
 // Left
 OCR3B = 0x07be; //551us
 }
 else if (servo == 2 && bling == 0){
 // Neutral
 OCR3B = 0x04da; //1.25ms
 }
 else if (servo == 3 && bling == 0){
 // Right
 OCR3B = 0x01fb; //2.15ms
 }

 35

 else if (servo == 4 && bling == 0){
 OCR3B = 0x04da;
 }
 bling++;
 }

 else{
 if(servo == 4){
 sense = 0;
 servo = 0;
 temp = 0;
 if(begin != 0 && distmsg->dir ==
way){
 stoprobot = 1;
 }
 }

 bling = 0;
 call Timer.stop();
 post SetupSonar();
 }
 }

 else{
 sense = 0;
 call Timer.stop();
 post SetupSonar();
 }
 }

 else if(sense == 15){

 OCR3AH = 0x46; //sets period to ~20ms
 OCR3AL = 0x50;
 OCR3CH = 0x20;
 OCR3CL = 0x00;
 TCCR3A = 0x2B;
 TCCR3B = 0x5A;

 if(thing == 0){
 if(start <= 3){
 if(way == 0x000e){
 if(begin == 0){
 post TurnRight();
 }
 else{
 post Print_Robot();
 post TurnLeft();
 }
 }
 else{
 post Print_Robot();
 post TurnRight();
 }
 start++;
 }
 else{

 36

 if(begin == 0){
 post MotorStop();
 start = 20;
 }
 else{
 post Forward();
 //sense = 4;
 check = 1;
 }

 if(start >= 12){
 start = 0;
 thing = 1;
 }
 else{
 start++;
 }
 }
 }

 else{
 if(way == 0x000e){
 if(begin == 0){
 way = 0x000d;
 }
 else{
 way = 0x000b;
 }
 }
 else if(way == 0x000b){
 way = 0x000e;
 }
 else{
 begin = 1;
 way = 0x000b;
 }
 sense = 4;
 wall = 1;
 thing = 0;
 start = 0;
 }

 }

 else{
 sense++;
 OCR3AH = 0x46; //sets period to ~20ms
 OCR3AL = 0x50;
 OCR3CH = 0x2A;
 OCR3CL = 0x30;
 TCCR3A = 0x2B;
 TCCR3B = 0x5A;

 if(way == 0x000e && distmsg->north < 40){

 37

 x1 = distmsg->north;
 temp = 10;
 sense = 15;
 start = 0;
 if(box == 1){
 sense = 0;
 temp = 0;
 post BoxTest();
 }
 }

 else if(way == 0x000b && distmsg->south < 40){
 x1 = distmsg->south;
 temp = 10;
 sense = 15;
 start = 0;
 if(box == 1){
 sense = 0;
 temp = 0;
 post BoxTest();
 }
 }

 else if(((way == 0x000d) || (way == 0x0007)) &&
((distmsg->south < 40) || (distmsg->north < 40))){
 if(box == 1){
 sense = 0;
 temp = 0;
 post BoxTest();
 }
 else{
 distmsg->north = 100;
 distmsg->south = 100;
 }
 }

 else if(way == 0x000d && distmsg->east < 40){
 temp = 10;
 sense = 15;
 start = 0;
 }

 else{

 if(stopping == 1){
 stopping = 0;
 call Timer.stop();
 }

 //Robot turns right YELLOW ON
 else if(state == 2){
 OCR3CH = 0x16;
 OCR3CL = 0x00;
 post TurnRight();
 }

 38

 //Robot turns left RED ON
 else if(state == 3){
 OCR3CH = 0x16;
 OCR3CL = 0x00;
 post TurnLeft();
 }

 //Robot Reverses ALL ON
 else if(state == 4){
 post Forward();
 }
 }

 }
}

task void Print_Data(){
 call Send.send(0, sizeof(IntMsgg), &data);
}

task void Addition(){
 avgY = (x1 + x2 + y1 + y2 + 0x19)/2;
 if (avgY < 260){
 box = 1;
 }
}

task void AtInterrupt(){
 int cmdistance;
 uint16_t useconds;
 atomic{
 if(first == 0){
 TCNT3H = 0x00;
 TCNT3L = 0x00;
 first = 1;
 TCCR3B = 0x02; // set clock with
8 prescaler, about 912.5kHz,
 // set trigger on
falling edge
 }
 else{

 ETIMSK = 0<<TICIE3; //disable Timer3,
capture, and interrupt
 useconds = widthcnt;
 cmdistance = useconds/58;
 first = 0; // reset for next cycle

 if(servohope == 1){
 servo = hope;
 }

 if(way == 0x000e){
 if(servo == 1){
 distmsg->west = cmdistance;
 }
 else if(servo == 2 || servo == 0){

 39

 distmsg->north = cmdistance;
 }
 else if(servo == 3){
 distmsg->east = cmdistance;
 }
 }

 else if(way == 0x000b){
 if(servo == 1){
 distmsg->east = cmdistance;
 }
 else if(servo == 2 || servo == 0){
 distmsg->south = cmdistance;
 }
 else if(servo == 3){
 distmsg->west = cmdistance;
 }
 }

 else if(way == 0x000d){
 if(servo == 1){
 //distmsg->north = cmdistance;
 north = cmdistance;
 }
 else if(servo == 2 || servo == 0){
 distmsg->east = cmdistance;
 }
 else if(servo == 3){
 //distmsg->south = cmdistance;
 south = cmdistance;
 }
 }

 else if(way == 0x0007){
 if(servo == 1){
 south = cmdistance;
 //distmsg->south = cmdistance;
 }
 else if(servo == 2 || servo == 0){
 distmsg->west = cmdistance;
 }
 else if(servo == 3){
 north = cmdistance;
 //distmsg->north = cmdistance;
 }
 }

 if(stoprobot == 1){
 stopping = 1;
 stoprobot = 0;
 }

 if(check == 1){
 y1 = distmsg->east;
 x2 = distmsg->west;
 if(servo == 3){
 check = 2;

 40

 }
 }
 else if(check == 2 && servo == 2){
 if(way == 0x000b){
 y2 = distmsg->south;
 }
 else if(way == 0x000e){
 y2 = distmsg->north;
 }
 post Addition();
 check = 0;
 }
 distmsg->avgY = box;
 call Timer.start(TIMER_REPEAT, 300);
 }
 post Print_Data();
 }
}

TOSH_INTERRUPT(SIG_INPUT_CAPTURE3){
 widthcnt = ICR3;
 post AtInterrupt();
}

event result_t Send.sendDone(TOS_MsgPtr msg, result_t success){
 if (pending && msg == &data){
 pending = FALSE;
 }
 return SUCCESS;
}
}

Southwest Node Main Code
/* Authors: Aly El-Osery
 Steven Myers
 Anthnoy Duran
*/

includes IntMsgg;

module RfmToIntM {
 provides interface StdControl;
 uses{
 interface StdControl as CommControl;
 interface ReceiveMsg as ReceiveIntMsg;
 interface Leds;
 interface SendMsg as Send;
 interface Timer;
 }
}

implementation{
 TOSH_ASSIGN_PIN(PW8, G, 0);
 TOSH_ASSIGN_PIN(PW9, G, 1);
 TOSH_ASSIGN_PIN(PW10, G, 2);
 uint16_t x1, x2, y1, y2, avgY;

 41

 int check;
 int box;
 int hookerbot;
 int state;
 int sense;
 int thing;
 int north;
 int south;
 int servo;
 int bling;
 int goingnorth;
 int goingsouth;
 int otherway;
 int limit;
 int reversing;
 int temp;
 int hope;
 int servohope;
 int begin;
 int drunk;
 int increase;
 int wall;
 int stoprobot;
 int detect;
 int firstime;
 int verify;
 int timing;
 int stopping;
 bool pending;
 struct TOS_Msg data;
 IntMsgg *distmsg = (IntMsgg *)data.data;
 int first; //# of times trigger function called
 uint16_t widthcnt; //65534 counter for trigger
 int start;
 uint16_t way;
 uint16_t comp;
 uint16_t nine;

 command result_t StdControl.init() {
 x1 = x2 = y1 = y2 = 0;
 avgY = 0;
 box = 0;
 check = 0;
 state = 0;
 sense = 0;
 increase = 0;
 first = 0;
 servo = 0;
 widthcnt = 0;
 start = 0;
 thing = 0;
 drunk = 30;
 wall = 0;
 bling = 0;
 temp = 0;
 begin = 0;
 goingsouth = 0;

 42

 goingnorth = 0;
 limit = 0;
 detect = 0;
 timing = 0;
 hope = 0;
 stoprobot = 0;
 servohope = 0;
 hookerbot = 0;
 firstime = 0;
 verify = 0;
 north = 0;
 south = 0;
 reversing = 0;
 stopping = 0;
 way = 0x000b;
 call CommControl.init();
 call Leds.init();
 return SUCCESS;
 }

 command result_t StdControl.start() {
 return call CommControl.start();
 //return call Timer.start(TIMER_REPEAT, 300);
 }

 command result_t StdControl.stop() {
 call Timer.stop();
 return call CommControl.stop();
 }

event TOS_MsgPtr ReceiveIntMsg.receive(TOS_MsgPtr m) {

 IntMsgg *message = (IntMsgg *)m->data;

 if(message->avgY == 0){
 call Timer.start(TIMER_REPEAT, 300);
 }
 else if(message->avgY == 2){
 box = 3;
 otherway = message->dir;
 goingnorth = message->north;
 goingsouth = message->south;
 call Timer.start(TIMER_REPEAT, 300);
 }

 return m;
}

task void Forward(){
 TOSH_CLR_PW0_PIN();
 TOSH_SET_PW2_PIN();
 TOSH_CLR_PW6_PIN();
 TOSH_SET_PW4_PIN();
}

task void TurnRight(){
 TOSH_CLR_PW0_PIN();

 43

 TOSH_CLR_PW2_PIN();
 TOSH_SET_PW6_PIN();
 TOSH_CLR_PW4_PIN();
}

task void TurnLeft(){
 TOSH_SET_PW0_PIN();
 TOSH_CLR_PW2_PIN();
 TOSH_CLR_PW6_PIN();
 TOSH_CLR_PW4_PIN();
}

task void MotorStop(){
 TOSH_CLR_PW0_PIN();
 TOSH_CLR_PW2_PIN();
 TOSH_CLR_PW6_PIN();
 TOSH_CLR_PW4_PIN();
}

task void ReverseThatBiatch(){
 TOSH_SET_PW0_PIN();
 TOSH_CLR_PW2_PIN();
 TOSH_SET_PW6_PIN();
 TOSH_CLR_PW4_PIN();
}

task void Print_Robot(){
 call Send.send(1, sizeof(IntMsgg), &data);
}

task void Print_BaseStation(){
 call Send.send(0, sizeof(IntMsgg), &data);
}

task void BoxFound(){
 box = 2;
 distmsg->avgY = box;
 if(reversing <= 9){
 post ReverseThatBiatch();
 reversing++;
 }
 else{
 post MotorStop();
 distmsg->north = north;
 distmsg->south = south;
 post Print_Robot();
 post Print_BaseStation();
 call Timer.stop();
 }
}

task void SetupSonar(){

 int temp2 = 0;
 //Left Wheel
 OCR3CH = 0x00;
 OCR3CL = 0x00;

 44

 TCCR3B = 0x42; //set clock with 8 prescaler, about
912.5kHz,
 TCCR3A = 0x00;

 DDRE = 0x80; //Set PE7 as input
 DDRC = 0x00; //set PC7 as output

 atomic{
 TOSH_SET_PW1_PIN(); //sets pw6 high
 while(temp2 < 250){
 temp2++;
 }
 temp2 = 0;
 TOSH_CLR_PW1_PIN();
 }
 SREG = 0x80; //Global Interrupt enable (pg9)
 ETIMSK = 1<<TICIE3; //enable Timer3, capture, and
interrupt
 return;
}

task void BoxMove(){
 if(increase == 4){
 increase = 0;
 post MotorStop();
 call Timer.stop();
 post SetupSonar();
 }

 else{
 OCR3AH = 0x46; //sets period to ~20ms
 OCR3AL = 0x50;
 OCR3CH = 0x2A;
 OCR3CL = 0x30;
 TCCR3A = 0x2B;
 TCCR3B = 0x5A;
 increase++;
 if(way == 0x000e || way == 0x000c || way == 0x0006){
 if(distmsg->north >= goingnorth){
 post Forward();
 }
 else if(otherway == 0x000d || otherway == 0x000c ||
otherway == 0x0009){
 if(limit == 0){
 if(start <= 3){
 OCR3CH = 0x20;
 OCR3CL = 0x00;
 post TurnLeft();
 start++;
 }
 else{
 limit = 1;
 }

 }
 else if(distmsg->north > 10){
 post Forward();

 45

 }
 else if(distmsg->north <= 10){
 post MotorStop();
 }
 }

 else if(otherway == 0x0007 || otherway == 0x0006 ||
otherway == 0x0003){
 if(limit == 0){
 if(start <= 3){
 OCR3CH = 0x20;
 OCR3CL = 0x00;
 post TurnRight();
 start++;
 }
 else{
 limit = 1;
 }

 }
 else if(distmsg->north > 10){
 post Forward();
 }
 else if(distmsg->north <= 10){
 post MotorStop();
 }
 }
 }

 else if(way == 0x000b || way == 0x0009 || way == 0x0003){
 if(distmsg->south >= goingsouth){
 post Forward();
 }
 else if(otherway == 0x000d || otherway == 0x000c ||
otherway == 0x0009){
 if(limit == 0){
 if(start <= 3){
 OCR3CH = 0x20;
 OCR3CL = 0x00;
 post TurnRight();
 start++;
 }
 else{
 limit = 1;
 }

 }
 else if(distmsg->south > 10){
 post Forward();
 }
 else if(distmsg->south <= 10){
 post MotorStop();
 }
 }

 else if(otherway == 0x0007 || otherway == 0x0006 ||
otherway == 0x0003){

 46

 if(limit == 0){
 if(start <= 3){
 OCR3CH = 0x20;
 OCR3CL = 0x00;
 post TurnLeft();
 start++;
 }
 else{
 limit = 1;
 }

 }
 else if(distmsg->south > 10){
 post Forward();
 }
 else if(distmsg->south <= 10){
 post MotorStop();
 }
 }
 }
 }
}

task void BoxTest(){

 if(firstime == 0 || firstime == 2){
 post MotorStop();
 servohope = 1;
 if(timing < 7){
 if(timing == 0){
 OCR3AH = 0x46; //sets period to
~20ms
 OCR3AL = 0x50;
 TCCR3B = 0x5A; //set clock with
8 prescaler, about 912.5kHz,
 TCCR3A = 0x2B;
 hope++;
 }
 if(hope == 1 && timing == 0){
 // Left
 OCR3B = 0x07be; //551us
 }
 else if(hope == 2 && timing == 0){
 // Neutral
 OCR3B = 0x04da; //1.25ms
 }
 else if(hope == 3 && timing == 0){
 // Right
 OCR3B = 0x01fb; //2.15ms
 }
 else if(hope == 4 && timing == 0){
 OCR3B = 0x04da;
 }
 timing++;
 }
 else{
 if(hope == 4){

 47

 sense = 0;
 hope = 0;
 temp = 0;
 if(firstime == 0){
 firstime = 1;
 }
 else{
 firstime = 3;
 }
 }
 timing = 0;
 call Timer.stop();
 post SetupSonar();
 }
 }

 else if(firstime == 1){
 if(verify <= 3){
 if(way == 0x000e){
 hookerbot = way;
 detect = distmsg->north;
 if(distmsg->west > distmsg->east){
 way = 0x0007;
 post TurnLeft();
 }
 else{
 way = 0x000d;
 post TurnRight();
 }
 }
 else if(way == 0x000b){
 hookerbot = way;
 detect = distmsg->south;
 if(distmsg->west > distmsg->east){
 way = 0x0007;
 post TurnRight();
 }
 else{
 way = 0x000d;
 post TurnLeft();
 }
 }
 verify++;
 }
 else{
 post Forward();
 if(verify >= 12){
 verify = 0;
 firstime = 2;
 }
 else{
 verify++;
 }
 }
 }

 else if(firstime == 3){

 48

 if(hookerbot == 0x000e){
 if(north >= (detect + 30)){
 post BoxFound();
 }
 else{
 box = 0;
 sense = 0;
 servohope = 0;
 avgY = 0;
 call Timer.start(TIMER_REPEAT, 300);
 }
 }
 else if(hookerbot == 0x000b){
 if(south >= (detect + 30)){
 post BoxFound();
 }
 else{
 box = 0;
 sense = 0;
 servohope = 0;
 avgY = 0;
 call Timer.start(TIMER_REPEAT, 300);
 }
 }
 }
}

event result_t Timer.fired(){
 TOSH_MAKE_PW8_INPUT();
 TOSH_MAKE_PW9_INPUT();
 TOSH_MAKE_PW5_INPUT();
 TOSH_MAKE_PW7_INPUT();
 distmsg->val2 = 0x02;
 distmsg->dir = (0x0001 & (TOSH_READ_PW8_PIN() * 0x00FF)) |
(0x0002 & (TOSH_READ_PW9_PIN() * 0x00FF)) | (0x0004 &
(TOSH_READ_PW5_PIN() * 0x00FF)) | (0x0008 & (TOSH_READ_PW7_PIN() *
0x00FF));
 comp = distmsg->dir & way;
 nine = comp | way;
 TOSH_SET_PW3_PIN();
 TOSH_SET_PW10_PIN();
 TOSH_MAKE_INT0_OUTPUT();
 TOSH_MAKE_INT1_OUTPUT();

 if(begin == 0){
 OCR3AH = 0x46; //sets period to ~20ms
 OCR3AL = 0x50;
 OCR3B = 0x04da; //1.25ms
 TCCR3A = 0x2B;
 TCCR3B = 0x5A;
 }

 if(drunk == 30){
 distmsg->south = 100;
 drunk = 0;
 }

 49

 if(distmsg->dir == way){
 if(wall == 1){
 temp = 10;
 sense = 4;
 wall = 0;
 }
 else{
 state = 4;
 }
 }
 else if(comp == 0x000c){
 state = 3;
 }
 else if(comp == 0x0003){
 state = 3;
 }
 else if(comp == 0x0006){
 state = 2;
 }
 else if(comp == 0x0009){
 state = 2;
 }
 else if(nine == 0x000e){
 state = 3;
 }
 else if(nine == 0x000b){
 state = 2;
 }

 if(way == 0x0007){
 if(distmsg->dir == way){
 state = 4;
 }
 else if(comp == 0x0003){
 state = 2;
 }
 else if(comp == 0x0006){
 state = 3;
 }
 }

 if(box == 3){
 post BoxMove();
 }

 else if(box == 2){
 post BoxFound();
 }

 else if(sense == 4){

 post MotorStop();

 if(temp == 10){
 if(bling < 7){
 if(bling == 0){

 50

 OCR3AH = 0x46;
 //sets period to ~20ms
 OCR3AL = 0x50;
 TCCR3B = 0x5A; //set
clock with 8 prescaler, about 912.5kHz,
 TCCR3A = 0x2B;
 servo++;
 }

 if (servo == 1 && bling == 0){
 // Left
 OCR3B = 0x07be; //551us
 }
 else if (servo == 2 && bling == 0){
 // Neutral
 OCR3B = 0x04da; //1.25ms
 }
 else if (servo == 3 && bling == 0){
 // Right
 OCR3B = 0x01fb; //2.15ms
 }
 else if (servo == 4 && bling == 0){
 OCR3B = 0x04da;
 }
 bling++;
 }

 else{
 if(servo == 4){
 sense = 0;
 servo = 0;
 temp = 0;
 if(begin != 0 && distmsg->dir ==
way){
 stoprobot = 1;
 }
 }

 bling = 0;
 call Timer.stop();
 post SetupSonar();
 }
 }

 else{
 sense = 0;
 call Timer.stop();
 post SetupSonar();
 }
 }

 else if(sense == 15){

 OCR3AH = 0x46; //sets period to ~20ms
 OCR3AL = 0x50;
 OCR3CH = 0x20;
 OCR3CL = 0x00;

 51

 TCCR3A = 0x2B;
 TCCR3B = 0x5A;

 if(thing == 0){
 if(start <= 3){
 if(way == 0x000b){
 if(begin == 0){
 post TurnRight();
 }
 else{
 post TurnLeft();
 }
 }
 else{
 post TurnRight();
 }
 start++;
 }
 else{
 if(begin == 0){
 post MotorStop();
 start = 20;
 }
 else{
 post Forward();
 //sense = 4;
 check = 1;
 }

 if(start >= 12){
 start = 0;
 thing = 1;
 }
 else{
 start++;
 }
 }
 }

 else{
 if(way == 0x000b){
 if(begin == 0){
 way = 0x0007;
 }
 else{
 way = 0x000e;
 }
 }
 else if(way == 0x000e){
 way = 0x000b;
 }
 else{
 begin = 1;
 way = 0x000e;
 }
 sense = 4;
 wall = 1;

 52

 thing = 0;
 start = 0;
 }

 }

 else{
 sense++;
 OCR3AH = 0x46; //sets period to ~20ms
 OCR3AL = 0x50;
 OCR3CH = 0x2A;
 OCR3CL = 0x30;
 TCCR3A = 0x2B;
 TCCR3B = 0x5A;

 if(way == 0x000e && distmsg->north < 40){
 x1 = distmsg->north;
 temp = 10;
 sense = 15;
 start = 0;
 if(box == 1){
 sense = 0;
 temp = 0;
 post BoxTest();
 }
 }

 else if(way == 0x000b && distmsg->south < 40){
 x1 = distmsg->south;
 temp = 10;
 sense = 15;
 start = 0;
 if(box == 1){
 sense = 0;
 temp = 0;
 post BoxTest();
 }
 }

 else if(((way == 0x000d) || (way == 0x0007)) &&
((distmsg->south < 40) || (distmsg->north < 40))){
 if(box == 1){
 sense = 0;
 temp = 0;
 post BoxTest();
 }
 else{
 distmsg->north = 100;
 distmsg->south = 100;
 }
 }

 else if(way == 0x0007 && distmsg->west < 40){
 temp = 10;
 sense = 15;

 53

 start = 0;
 }

 else{

 //Robot turns right YELLOW ON
 if(stopping == 1){
 stopping = 0;
 post Print_Robot();
 call Timer.stop();
 }

 else if(state == 2){
 OCR3CH = 0x16;
 OCR3CL = 0x00;
 post TurnRight();
 }

 //Robot turns left RED ON
 else if(state == 3){
 OCR3CH = 0x16;
 OCR3CL = 0x00;
 post TurnLeft();
 }

 //Robot Reverses ALL ON
 else if(state == 4){
 post Forward();
 }
 }

 }
}

task void Print_Data(){
 call Send.send(0, sizeof(IntMsgg), &data);
}

task void Addition(){
 avgY = (x1 + x2 + y1 + y2 + 0x19)/2;
 if (avgY < 260){
 box = 1;
 }
}

task void AtInterrupt(){
 int cmdistance;
 uint16_t useconds;
 atomic{
 if(first == 0){
 TCNT3H = 0x00;
 TCNT3L = 0x00;
 first = 1;
 TCCR3B = 0x02; // set clock with
8 prescaler, about 912.5kHz,

 54

 // set trigger on
falling edge
 }
 else{

 ETIMSK = 0<<TICIE3; //disable Timer3,
capture, and interrupt
 useconds = widthcnt;
 cmdistance = useconds/58;
 first = 0; // reset for next cycle

 if(servohope == 1){
 servo = hope;
 }

 if(way == 0x000e){
 if(servo == 1){
 distmsg->west = cmdistance;
 }
 else if(servo == 2 || servo == 0){
 distmsg->north = cmdistance;
 }
 else if(servo == 3){
 distmsg->east = cmdistance;
 }
 }

 else if(way == 0x000b){
 if(servo == 1){
 distmsg->east = cmdistance;
 }
 else if(servo == 2 || servo == 0){
 distmsg->south = cmdistance;
 }
 else if(servo == 3){
 distmsg->west = cmdistance;
 }
 }

 else if(way == 0x000d){
 if(servo == 1){
 //distmsg->north = cmdistance;
 north = cmdistance;
 }
 else if(servo == 2 || servo == 0){
 distmsg->east = cmdistance;
 }
 else if(servo == 3){
 //distmsg->south = cmdistance;
 south = cmdistance;
 }
 }

 else if(way == 0x0007){
 if(servo == 1){
 south = cmdistance;
 //distmsg->south = cmdistance;

 55

 }
 else if(servo == 2 || servo == 0){
 distmsg->west = cmdistance;
 }
 else if(servo == 3){
 north = cmdistance;
 //distmsg->north = cmdistance;
 }
 }

 if(stoprobot == 1){
 stopping = 1;
 stoprobot = 0;
 }

 if(check == 1){
 y1 = distmsg->east;
 x2 = distmsg->west;
 if(servo == 3){
 check = 2;
 }
 }
 else if(check == 2 && servo == 2){
 if(way == 0x000b){
 y2 = distmsg->south;
 }
 else if(way == 0x000e){
 y2 = distmsg->north;
 }
 post Addition();
 check = 0;
 }
 distmsg->avgY = box;
 call Timer.start(TIMER_REPEAT, 300);
 }
 post Print_Data();
 }
}

TOSH_INTERRUPT(SIG_INPUT_CAPTURE3){
 widthcnt = ICR3;
 post AtInterrupt();
}

event result_t Send.sendDone(TOS_MsgPtr msg, result_t success){
 if (pending && msg == &data){
 pending = FALSE;
 }
 return SUCCESS;
}
}

 56

Appendix C
Schematics

 57

