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Abstract—This paper explains a sensor network of mobile 

nodes with wireless capabilities.  The nodes use a MicaZ 
microcontroller to communicate wirelessly with a base-station.  
The nodes localize using ultrasonic sound transmissions and 
Time Difference of Arrival.  The task of the nodes is to locate a 
black box within a searching field.  A random searching method 
is performed, and infrared sensors combined with a bumper 
switch system are used to locate the black box. 
 

Index Terms—localization, infrared sensing, robots, search 
methods, ultrasonic sensing.  
 

I. INTRODUCTION 
ur design project is in the area of mobile sensor networks.  
The problem was to design a sensor network of mobile 

nodes which could travel an area in search of an object. The 
search area is a 3m x 3m walled-in arena with white walls, and 
the missing object is a 30cm x 30cm x 30cm black box.   The 
nodes/robots are to be randomly placed somewhere in the 
searching field, and with no prior knowledge of their position 
they should localize themselves with respect to the field.  The 
nodes search for the black box. After one node locates the box, 
the remaining nodes should also converge upon it. 

A. Design Requirements 
 We were provided with 4 MicaZ microcontrollers 
(small microcontrollers with wireless communication 
abilities), an interface board to connect the MicaZ to a 
computer, and 3 motor kits with wheels.  With these objects 
and a $250 budget we began our project. 
 We were required to have at least 2 mobile nodes in 
the field with independent searching abilities.  These nodes 
could only communicate wirelessly through the MicaZ.  A 
Base-station located outside the field could assist the nodes in 
localizing and other tasks.  After being placed in the field, the 
nodes should localize in real-time. Another project 
requirement was the design and implementation of a GUI 
(Graphical User Interface).  This GUI needed to display the 
searching field as well as the nodes within the field.  The GUI 
was required to update the node locations at a refresh rate of 2 
seconds, and once the nodes locate the black box it should also 
be displayed on the GUI. 
 This paper analyzes the approach we took to solving 
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this problem.  Our localization method, searching approach, 
hardware design, and programming are all explained.  A 
general block diagram of our overall system is included in  
Appendix B. 

II. LOCALIZATION  

A. Concept 
 Localization is an integral part of this project.  

Initially we considered localization using an RF system, but 
this approach is too inaccurate for use in small areas.   
Ultrasound was decided to be a good alternative.  Upon 
consideration of the design requirements we decided that each 
node should transmit ultrasonic waves in a 360º circle.  
Transmitting a full 360º enables quick and reliable localization 
of multiple nodes in short time periods.   To enable each node 
to transmit in this pattern, an aluminum cone was mounted 
directly above the transmitter as shown in Figure 1.  
Aluminum cones were donated to our group via the Energetic 
Materials Research and Testing Center Machine Shop.  The 
transmitters were placed on each mobile node, and four 
ultrasonic receivers were positioned at each corner of the 3m 
testing area.  To avoid the problem of clock synchronization 
our localization technique uses a Time Difference of Arrival 
(TDOA) method.    

 
 

 
Fig.1.  The cone reflects the sound waves to create a 360º transmission of 

ultrasound. 
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After researching TDOA methods [1], a non-linear, 
2-Dimensional model was created in MATLAB and used to 
calculate each node’s position.  This original design used the 
solve function of MATLAB to take the non-linear equation 
and solve it. The first ultrasonic receiver to receive a signal 
and the two adjacent receivers calculated the position of the 
node.  The inaccuracies in this calculation required about 20 
samples per positioning to get a reading accurate to 
approximately 30 cm.  The multiple samples necessary caused 
the calculations to take from 10 to 15 seconds per coordinate.  
These limitations did not allow this method to be used and still 
produce the required two second refresh rate. 

B. Implementation 
With this new realization in mind, the localization 

team began work on obtaining quicker and more accurate 
calculations.  The original circuit for the receiver and 
transmitter began with an ultrasonic switch [2].  This switch 
does not require any information about signal strength, it only 
registers that a signal is received.  In order for TDOA to work 
accurately, the sensitivity of the circuit must be very high.   
This high sensitivity means that the circuit can be vulnerable 
to outside noise.  The receiver circuit has a potentiometer on a 
comparator to allow for sensitivity control of the design, and 
the circuit was compactly built to cut down on noise.  Even 
after this, our localization output was still unreliable and 
would sometimes produce seemingly random numbers.  The 
transmitter circuit also needed to be analyzed. 

 The transmitter is another part of this ultrasonic 
switch.  It uses a 555 Timer to create a 40 kHz square wave to 
run the ultrasonic transducer [1]. The power to the entire 
circuit, including the 555 Timer, was cycled to create a stop 
and go transmit of the ultrasound.  A problem we discovered 
with this circuit was that the 555 Timer did not always start on 
a 40 kHz wave.  Due to the capacitance of the circuit, it could 
take up to 10 ms to stabilize to 40 kHz.  This 10 ms period 
could produce errors in localization almost as large as the 3m 
arena.  

 To solve this problem, the 555 Timer was given 
power at all times of operation.  Now a new method of cycling 
the transmission was needed.  Since the transmit enable line 
from the MicaZ is only 3V max, it could not be used with a 
FET or BJT to switch the circuit on and off directly, since it is 
all run on 9-11V.  To cure this problem, a BJT-FET series was 
created and used as a switch for the transmission line.  The 
BJT’s collector is connected to 9V via a 10k resistor, and its 
emitter to ground.  When the BJT is off, 9V is sourced to the 
output, whereas a lower voltage is sourced when the BJT is 
on.  The collector is then connected to the gate of a MOSFET 
and the drain of the MOSFET is connected to the transmission 
line right after the 1k resistor, and its source to ground.  This 
set up allows the MOSFET to bring the voltage right after the 
1k resistor to ground when it is on, regardless of whether the 
555 Timer is transmitting or not.  Thus, when the MicaZ 
transmission line is 0V, the BJT is off and the MOSFET is on, 
bringing the transmitter line to 0V and not transmitting.  When 
the MicaZ sends a 3V signal to the BJT base, the BJT turns on 

and the gate of the MOSFET grounds, turning off the 
MOSFET and allowing the transmitter line to be what it likes, 
transmitting the 40 kHz square wave to the transducer.  After 
this problem was solved, there was no delay difference 
between the transmitter and receiver. This enabled our 
calculations to be accurate and reliable. 

C. Localization Programming 
Further localization problems lied mainly in 

programming.  The HCS12 microcontroller used its input 
capture pins to receive signals.  When these signals were 
received the HCS12 stored a counter value for each received 
signal.  Then the time difference of the counter values was 
taken and sent over the serial port.  After a certain length of 
time, the HCS12 then used an output port to reset the receiver 
circuitry via BJT’s used as switches.  Once MATLAB 
received the values, it used a formula that takes 2 time 
differences and calculates the x and y coordinates for the node. 
The equation is shown below where ∆t is the time difference 
of the current receiver and the initial receiver, x and y are node 
coordinates, xn & yn are the current receiver coordinates, and 
x0 & y0 are the initial receiver coordinates. 

 
∆t = √((x - xn)2 + (y - yn) 2) - √ ((x - x0) 2 + (y - y0)2) 

 
This equation is used twice to actually calculate the position of 
the node.  The first uses the time difference and coordinates of 
the left adjacent receiver to the initial receiver, and the second 
uses the right adjacent receiver.  Then MATLAB uses its 
‘solve’ function to take the two equations and find exclusive x 
and y values. The problem here was that the third time 
difference could not be used because the equations were very 
exact and the third time difference would have to be exact for 
the equation to work, otherwise MATLAB would give an 
unsolvable function error.  This function was still slow and 
was able to only give one coordinate per pulse. 

To overcome this problem the ‘syms’ function in 
MATLAB was used, the equations that were used to solve for 
the coordinates were plugged in with its variables unsolved.  
Then the program produced a long and drawn out equation 
that could be used just the same as the original, but was only 
good for that one receiver.  An equation was obtained using 
the first ultrasonic receiver to receive a pulse and the time 
difference in the ultrasonic receivers to the adjacent right and 
left corners of the box.  Due to the basic symmetry of a square 
area, the same equation can be used by ‘rotating’ the 3 m area 
so that the second receiver is in the first receiver’s position.  
Thus our final method evolved to use one equation no matter 
which receiver received first.  Once the coordinates are found 
using this equation, they are simply shifted such that it fits our 
GUI assignments.  This quick and linear equation was easy to 
implement and from this point forward the Python 
programming language was used for localization.  It was 
found that for one pulse, all four receivers gave roughly the 
same coordinates no matter which one received first.  The 
code uses this and with one pulse, four coordinates are found 
and averaged to get the best results and most accuracy.   
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 Our receivers require a direct line of sight to the 
transmitter.   Therefore, if one receiver was blocked, the data 
was ruined.  To assess this problem a failsafe was 
implemented in the programming so that if a time difference 
exceeds the threshold value required for the ultrasound to 
almost traverse the box from corner to corner, a flag is set and 
the receiver number is stored.  Then the program determines 
which receiver is opposite the blocked receiver and only uses 
data from that opposite receiver and the two adjacent to it.  
This makes the calculation a little less accurate because it does 
not have the average of four coordinates, but it is better than 
having bad data or no data at all if one receiver is blocked.  If 
there is more than one time difference that is beyond this 
threshold, another flag is set and no calculations occur.  The 
base station is given an error message informing it of bad data 
values.  

D. Localization Hardware 
 After the program was finalized, the system needed 

to be fine tuned to work to the best of its ability.  To get the 
best signal quality and accurate localization, the aluminum 
cones need to be exactly centered over the transmitter and 
level.  The first method to mount the cones on the chassis used 
four rods to hold the cone above the transmitter.  Upon testing, 
we discovered that the rods could block the signal if they 
directly lined up with one of the receiver’s in the corner of the 
3m field.  That receiver would not receive a straight signal, but 
rather a reflection, giving bad data values.  For this reason, the 
final design uses a wire mesh (or gutter guard from ACE 
Hardware) to hold the cone above the transmitter.  A problem 
with this design is that the mesh is not as sold as the rods, and 
the cone can move slightly around the transmitter.  It is 
required to level and center the cone by eye, which introduces 
inaccuracies. 

 Another hardware issue we encountered was 
mounting the receiver transducers.  We began by using foam 
taped into the corners of the field, but this was very unstable.  
Also during final testing we discovered that when the black 
box was placed in the field it blocked our signals.  So for the 
final demonstration, we chose dowel rods to hold the 
transducers about 91 cm above the floor and pointed down at a 
30º angle.  This increased our line of sight between the 
transmitters and receivers, but introduced a 3-Dimensional 
factor to our calculations.  Even if the node was in the exact 
corner, it still had to travel about 70 cm to the receiver.  Thus, 
as the nodes got closer to the corners, our localization was less 
accurate.   We used a linear equation to correct for this.  This 
made the center areas near the walls less accurate, due to the 
fact that the linear equation pushed the limits outside the field.  
This makes the nodes appear at the edge of the box even if 
they are not quite there yet.  Time constraints prohibited us 
from fully accounting for the 3-Dimensional difference and 
with more time, better calculations could be used. 

E. Localization Results 
 In the end, the accuracy for an immobile node could 

be 3-5 cm (before we raised the receivers and introduced a 3-

D calculation error).  For moving nodes we obtained 10-20 cm 
accuracy.  Once the moving node stopped, the accuracy 
pinpointed once again to an accurate position.  When 
displayed on the GUI, a moving node’s position could be 
tracked.  A stationary node would display at almost the exact 
same position after each refresh, unless an error was 
introduced into the receivers such that one of the data points 
was bad or thrown out.  The scalability of this method of 
localization is only limited by the reception of the receivers.  
However this design could be implemented into RF systems 
for larger scale.  If a larger area is used, the only changes 
needed in the equations are to use the correct size of field and 
to update the array of positions for the receivers.  The equation 
could even be calculated in such a way that the positions of 
the receivers are scaleable with one equation.  For our 
purposes it was more efficient to use our current equation due 
to the unchanging size of the field. 

III.  SENSORS 
 Aside from the ultrasonic sensors for localization, we 

used three different types of sensors on our mobile nodes. 
These were infrared ranger sensors, open center encoders, and 
push button switches.  

A. Infrared Sensors 
 After localization, our primary concern was object 

location and obstacle avoidance.  For this we needed sensors.  
We considered many possibilities such as photo sensors, 
ultrasonic rangers, laser range finders, and infrared sensors.   
We dismissed the use of photo diodes because they do not 
have the range we require.  Ultrasonic rangers could not be 
used to measure distance because they would interfere with 
our localization method.  Laser rangers were too expensive for 
our project.  Our final decision was to choose infrared (IR) 
sensors. The infrared sensors, GP2Y0A02YK, we picked have 
a measuring range from 20 cm to 150 cm. They provide 
precise detection of distance and output an analog voltage 
which could be directly connected to the MicaZ with no 
additional circuitry needed. Also, the price for each unit was 
well within our budget. We used these IR sensors for obstacle 
avoidance and object detection. They integrated nicely onto 
our mobile nodes and worked quite well. 

B. Encoders 
 The second type of sensors we used were open center 

encoders. We looked at a few types of encoders before we 
chose to use open center, P12319-ND, encoders. Some of our 
earlier considerations were optical encoders and surface mount 
magnetic binary encoders. These were dismissed due to 
hardware mounting difficulties. We intended to use the open 
center encoders to keep track of the nodes’ movements and 
assist in updating the GUI at the required refresh rate without 
constantly using the ultrasonic localization. These encoders 
have two output channels, phase A and B, and these particular 
encoders have 15 pulses resolution. By comparing the two 
phases, A and B, and which gets triggered first, we can 
determine the direction of the nodes’ movement, forward or 
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backward. The encoders are mounted on each wheel. They 
track of each wheel’s speed, and theoretically we could 
synchronize the speed of both wheels using pulse width 
modulation. They are also intended to keep track of which 
direction the node turns as well as the angle of the turn the 
node made.  In practice, the encoders did not work very well 
with our particular situation.  The slick tiled floor of the arena 
caused the wheels to often spin/slip without actually moving 
the robot.  This is another area of the project that could have 
been improved on with more time.  In the end, we did not use 
the data from the encoders.  

C. Push Button Switches 
 The third type of sensors we used were push button 

switches. We used these switches primarily for object 
detection. Since the IR sensors’ readings are unreliable from 0 
to 20 cm, we needed something to compensate for that region. 
We mounted these switches on bumpers as a fail safe device 
for object detection.  Each node had four switches, two in 
front and one on each side of the robot.  Their outputs were all 
connected together and sent through an RC circuit for 
debouncing. These switches worked well with our mobile 
nodes. Also, the switches and IR sensors provided some 
redundancy in objection detection. 

IV. PROGRAMMING 
The programming team for this project had the job of 

writing all the glue that made all the hardware subsystems 
interact to meet the project's two main goals localization and 
searching.  To make the code as readable as possible and to 
keep make modular coding a reality it was chosen to adopt an 
object oriented software design.  This meant creating objects 
and therefore classes to support said objects. Programming can 
broken up into several parts namely MicaZ programming, 
HCS12 programming, low-level GUI, and high-level GUI. 

First the MicaZ programming must be done under the 
Tinyos architecture and therefore in the language nesC.  This 
new architecture and subsequent language required quite a 
learning curve to be comfortable with programming for it.  In 
addition, applying the aforementioned object oriented 
programming model presented some challenges. The 
programming for the MicaZ can be further divided into 
loosely defined modules.  The first and lowest module was 
named Drive.  This module as the name suggests controlled all 
the micocontroller code which governed the driving the node 
around.  This involved writing code which implemented PWM 
and at the same time as sending the correct signals on the 
control lines to the H-Bridge.  This module was quite easy to 
implement as the strategy was adopted to use the underlying 
Atmel layer to directly access pins and other important 
registers.  The most difficult challenge for this module was 
figuring out the interface description code for the Tinyos 
compiler. 

The next MicaZ component which was implemented 
was called Node.  This is what could best be described as a 
main object.  Therefore this object called all the methods 
mentioned above in the discussion of the Drive module.  This 

module unlike the Drive module needed to take advantage of 
many of Tinyos's features.  Node could be further divided in 
two major components communications and data acquisition.  
The communications for this module relied on the 
GenericComm interface provided by TinyOs.  The 
communications for the node programming actually plays one 
of the most integral roles in driving the operation of the nodes.  
This is because the Node module actually implements an event 
driven design model.  This means that if no commands are 
sent then the object does nothing.  The model limits some 
features that might be handy such as an automatic bumper kill 
switch.  However, given the timetable for our project and the 
necessity for easy debugging and quick changes it was decided 
that pure event driven was fine to complete the goals of this 
project.  The sensor code was relatively simple as there were 
existing examples for all the various types of input that were 
taken in. 

Next, the HCS12 programming was quite simple as 
all it did was capture time differences and send them to the 
computer via serial UART (Universal Asynchronous Receiver 
Transmitter).   First the there needs to be a justification as to 
why to use the HCS12 rather than rely entirely on the MicaZ 
as an exclusive base-station.  This was done due to the on 
board hardware that the HCS12 includes but the MicaZ lacks.  
With the input capture pins on the MicaZ there is no latch to 
hold the values so the ISR must be relatively fast. By itself this 
is not necessarily a problem, except that the localization needs 
as accurate times as possible.  In addition, during periods of 
heavy communication via the radio the ISR may not be as 
predicable as before and therefore the probability of missing 
the aforementioned deadline is increased.  In summary, to 
implement the data acquisition the input capture functions of 
the HCS12 were used.  Then to transmit the data simple 
Debug12 printfs were used. 

Next, the low-level GUI implemented all the 
hardware interfacing needed for this project.  The two pieces 
of hardware which communicated with the computer were the 
MicaZ base-station and the HCS12.  The HCS12 was quite 
easy to implement as the data was packed into parseable 
strings which were then fed to the high-level GUI.  The MicaZ 
base-station was a bit more complicated as it required the 
packing and unpacking of packets.  This required quite a bit of 
error checking as well as a good amount of research to get the 
packets absolutely correct.  Note that to communicate with a 
node this module was passed an address so that the address for 
the nodes were absolutely an abstract id not particularly hard 
coded in any fashion. 

Finally, the High-level GUI allowed for interesting 
and user interactive features to be implemented with ease.  
One of the objects contained within the high-level GUI 
category is the Node class.  This class of objects implements 
all the features available through the corresponding MicaZ 
module.  This includes drive functions and sensor readings.  
The main purpose of this class is to allow the random 
searching algorithm to be written in high level human readable 
format.  An example of this is to move an instantiated "Node 
node1" forward. All one has to do is simply call the forward 
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method in the following manner:"node1.forward(...)."  Using 
this interface the random search algorithm can be easily 
implemented.  The concept behind our searching algorithm is 
that when the node determines it is within 20cm of an object 
the program accurately calculates the nodes position. If the 
node position is within 30cm of a wall then the sensed object 
must be a wall.  The node then turns a random angle and 
continues under the same parameters.  However, if the node 
encounters an object and determines that is not less than 30cm 
to a wall then that object must be the missing black box.  A 
small correction subroutine is needed to check to make sure 
the box that it found is not really another node. This is done by 
simply calculating the remaining nodes positions and 
comparing to the found box. 

In addition, the graphics for the GUI are implemented 
in a suite known as TkInter or Tk.  This allows the normally 
command line driven python to turn into a graphical interface 
that any windows user would be comfortable using. 

In conclusion, the programming for this project was 
not as difficult as some might think.  However, without the use 
of standard design strategies, the actual coding could turn 
from well structured and easy to write into the ever feared 
spaghetti code that is found in many failed programming 
projects. 
 

V. CHASSIS 
 The components of our chassis were included in a 

two level structure. The first level held our gear boxes, MicaZ, 
and H-Bridge while our second level held our bumper 
switches, printed circuit board, the main 9.6V battery, and our 
aluminum cone. Our chassis allowed for easy expandability 
and room for large changes in the design.  However, it had 
difficulties with flat tires, wheel slippage, and gear box speed 
variations between the two tires. In future use, the provided 
wheels should be replaced by heavy duty wheels which can 
hold more weight and grip more easily. Instructions for the 
assembly of our chassis with necessary parts are included in 
Appendix A. 

VI. POWER 
Our chassis required 3 different power sources. A 

9.6V unregulated voltage, a 5V regulated voltage, and the 3 
volts needed for the MicaZ. Our power system includes a 9.6 
volt nickel metal hydride battery. This battery is rechargeable 
in 6 hours and provides 1300 milliamp hours.  The 9.6 volts 
are regulated down to 5 volts as shown in the voltage regulator 
schematic of Appendix C. 

The unregulated 9.6 volts was used for the ultrasonic 
transmitter and the transmit enable circuitry. The infrared 
sensor, the bumper switches, the encoders, and the H-Bridge 
all required the 5 volt input. The 9.6 volts was regulated down 
to 5 volts using a 7805 voltage regulator with a heat sink.  

The MicaZ microcontroller runs off of its own 2 AA 
batteries which in series provided 3 volts. The life expectancy 
of the AA never came into play as they never required 

replacement. Basic AA batteries usually provide about 1800-
2600 milliamp hours of playtime. If the MicaZ allowed for a 3 
volt input, a regulated 3 volt input would be the preferred 
supply voltage for the microcontroller. By regulating the 9.6 
volts down to 3 volts for the MicaZ, we would be capable of 
running the entire chassis off of one battery. 

Depending on the components being tested, the 
actual lifetime for the 9.6 volt battery was around 2-3 hours 
for our design. These numbers could be enhanced by using a 
low dropout voltage regulator. 

VII. PRINTED CIRCUIT BOARD 

A. Board Fabrication 
 As each node evolved, circuitry was added to enable 

the various sensors and components to function properly.  This 
resulted in a large amount of wires and components needing 
placement on each node.  As a solution to this “rats” nest it 
was decided to fabricate a PCB board.  This decision was 
made since moving to a PCB board eliminated any “rats” nest 
wiring, created a professional look, saved space on each node, 
and aided in the placement of components.  In order to realize 
a PCB board the following steps had to be performed: 

1) Design 
 The first step in creating the PCB board was the 

design process.  First the desired circuits were analyzed for 
best placement.  These circuits include the voltage regulator, 
transmitter, bumper switch, and the encoders. Once all the 
circuitry was tested for full functionality drawings were 
created of possible component layouts on various board 
sizes/board layers.  Components from the following circuits 
were placed in this design:  A board size of 3” wide by 4” tall 
was chosen.  This size allowed for easy placement on each 
node while allowing extra space for the 9.6V battery and any 
unseen additions.  It was initially decided to use a single sided 
board for ease of manufacturing.  It became apparent 
thereafter that due to the number of components and nets that 
a double sided design would be necessary.   

 The size of the board and the number of layers 
affected the localization ability of each node.  In order to 
achieve accurate ultrasonic dispersion the aluminum cone had 
be directly above the transducer.  This was accomplished with 
the utilization of computer aided measuring.  The ultrasonic 
transducer was placed in the center of the board.  Given the 
size of the aluminum cone, it was determined that mounting 
holes needed to be placed at a distance of 1.3774 inches from 
center every 90 degrees.  At each of the measured points a pad 
was placed that would later be drilled out to allow for 
hardware installation. 

 For input/output (I/O) operations 2 twenty-pin, 
female headers are used.  These connectors are placed on the 
edge of the board near the bottom.  The input connector serves 
as an interface between the sensors and the board.  The output 
connector serves as an interface between the MicaZ and the 
board.  Both connectors contained power pins in order to 
enable later expansion.   

 Next, the remaining components were placed in the 
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design around the mounting holes and transducer. This 
included voltage regulation, bumper switches, and encoders.  
All circuits that contained the same nets were placed in close 
proximity to each other.   At this point the circuit layout was 
created using Altium Protel DXP 2004 SP2.  Trace widths 
were set to be 25 thou (1 thou = 1/1000 inch).   Power trace 
widths were set to 30 thou.  Electrical clearance was set to 15 
thou.  The software and equipment used to realize the design 
was property of the National Radio Astronomy Observatory 
[3].  When the layout was complete, gerber files were created 
that were then changed to bitmaps (See Appendix C).  The 
final board can be observed in Appendix D.  The bitmaps are 
necessary for step 2, printing.  

2) Printing 
The second step in the board fabrication was the 

transfer of the design from the computer to blue paper.  Using 
the electrical engineering department’s facilities the bitmaps 
were printed on blue paper.  The print job was scaled to 3” by 
4” to fit the board size.  Each bitmap was converted to 
grayscale and had the contrast increased.  This allowed for the 
best transfer to paper. The bitmap files printed were 
“JuniorDesignBottomLayer.bmp” and 
“JuniorDesignTopLayer.bmp”. (See Appendix C).  It is 
important to note that one bitmap is mirrored.  This enables 
the two layers to be aligned when transferred. 

3) Design Transfer 
 Three pieces of 3” by 4” PCB board were then cut.  

Using an SOS pad, any oxidation was removed.  The board 
was then cleaned.  Heat was applied to transfer the design to 
one side of the board.  Once transferred three holes were 
drilled in known locations in order to align the two sides.  The 
second side was aligned with the known hole locations using 
wires.  Once aligned the second side was transferred.  At this 
point the board was inspected for any transfer defects.  The 
first board that was transferred was a learning experience.  All 
of the traces near the edge of the board failed to transfer.  
Simply drawing in the missing traces with a Sharpie fixed this 
problem but left an unappealing final result.  The second and 
third boards did not encounter any errors in the transfer 
process.  When the transfer process was complete the boards 
were etched. 

4) Etching 
 Etching is a process in which excess copper is 

removed from the PCB.  This is done with a ferric chloride 
chemical bath.  All of the places where a design has 
transferred are safe from the chemical reaction leaving only 
the desired circuitry remaining.  It was quickly learned that 
since the board is double sided, it must be regularly turned.  
This process took approximately 25 minutes per board.    

5) Tinning 
 After the etching stage all that is left on the board are 

copper traces.  In order to ensure functionality and longevity 
each trace was then tinned with solder.  Tinning was 
performed at 700 degrees Fahrenheit.     

6) Drilling 
 Holes were drilled in the tinned board to prepare for 

component placement.  For all resistors, capacitors, and vias, a 

size #69 drill bit was used.  All power pads, connector pads, 
regulator pads, and FET pads were drilled with a 1.15 size bit.  
The first board was drilled without any pad preparation and 
resulted in many inaccurate but functional pads.  The two 
successive boards were drilled with hole preparation and were 
more successful.  It was noticed that with a two sided board if 
the drill was applied too fast the pad on the other side would 
be lifted off the board.  This was fixed after the first 
occurrence 

7) Component Placement 
 All components were then placed on the board using 

the bitmap “JuniorDesignTopOverlay.bmp” as a reference 
(See Appendix C).  All resistors, capacitors, and BJT’s were 
easy to place.  The FET, voltage regulator, 555 timer, Schmitt 
trigger, and connectors were more difficult due to inaccuracy 
in hole drilling.  The functionality was never a problem with 
the difficult component placement.  This difficulty was 
consistent through the fabrication of all three boards.   The 
ultrasonic transducer was placed on the opposite side of the 
board than the rest of the components in order to allow for 
unobstructed transmission.  One error was encountered with 
capacitor C8.  It has the value of 680pF.  This value was not 
available through the electrical engineering facilities.  In order 
to accommodate for this value two capacitors were used in 
parallel, one on each side of the board.    

8) Testing 
 Once a board was fully populated it was tested for 

functionality.  This was done by first performing a continuity 
test to check for short circuits and open circuits.  Each of the 
three boards was verified to have continuity.  Power was then 
applied to each board to ensure correct operation.  Using a 
multimeter the power was checked at each +5V net and +9V 
net.  This included all power pins on the input and output 
connector.  All boards were verified working.  At this point 
the ultrasonic transducer had to be tuned to the correct 
frequency for optimal operation.  Each board was tuned to 40 
kHz by adjusting the 100 kΩ precision pot and observing the 
output on an oscilloscope.  Tuning was the last required act on 
each board.  The boards were now ready to be mounted on the 
chassis. 

VIII. CONCLUSION 

A. Design Strengths 
The strengths of this design can be summarized in 

four main topics; localization method, modular software 
design, integrated circuit board, and expandability. 

1) Localization Method 
The dominant strength in this design was the ability 

to adapt a TDOA localization method from the wall used radio 
frequency spectrum to the less used ultrasonic range.  By 
making this adaptation this design is easily scalable from a 
small 3 meter by 3 meter box to a playing field that is much 
larger.  Along with the scalability of the localization method, 
TDOA also allows there to be very little communication 
between the base-station and the mobile sensors.  The reason 
for this is due to the lack of synchronization that is needed 
between the base-station and the mobile sensors. 



 9

2) Modular Software Design 
With the modular software design, troubleshooting of 

the individual parts of the robot are made substantially easier.  
Each sensor circuit can be tested very early in the design phase 
with it own module software.  This allows for trouble shooting 
of hardware and software before integration occurs.  Once a 
robot is completed, troubleshooting of the individual parts can 
still be accomplished using the same modules. 

3) Integrated Circuit Board 
By using an integrated circuit board that contains all 

of the circuitry need for the entire mobile sensor the design is 
easily reproducible.  Also having all of the signals on one 
circuit card assembly signal integrity is easily controlled.  An 
integrated circuit board is essential to having a robust and 
reproducible design. 

4) Expandability 
When trying to produce a working prototype mobile 

sensor one thing is constant, and that is change.  For this 
reason it is imperative to have a platform that is easily 
expanded.  The expandability also allows for changes in 
customer requirements without taking a large hit in cost or 
production time. 

B. Second Generation Recommendations  
The following are a list of recommendations for a 

second generation build of the mobile sensor.  These 
recommendations are intended to make the reliability, ease of 
production, ease of hardware debugging, and functionality 
better. 

1) Chassis Weight Distribution 
To eliminate tire slippage the weight distribution of 

the chassis should be improved.  Recommendations are to 
move more of the weight over the wheels of the chassis.  This 
could be done by moving the battery mount to the front of the 
chassis while still keeping the weight of the cone close to the 
wheel base.   

By improving the weight distribution of the chassis 
the problem of wheel slipping can be improved.  This will in 
turn improve the usefulness of the wheel encoders.  The more 
accurate these encoders are the easier it is for the program to 
keep track of where the mobile sensor is. 

2) Adding Test Points to PCB 
The hardware for this design is sometimes difficult to 

trouble shoot because most of the parts are not accessible to 
test probes.  To make it easier to access, test points should be 
added to the sides of the integrated circuit board. 

3) Using Surface Mount Components 
By changing from through hole parts to surface 

mount parts, both reliability and ease of hardware debugging 
will be improved.  By going to surface mount parts and 
moving them to the front of the board (same side as 
transducer) access to signals with test probes will be easier.  

Surface mount parts will also allow for better 
reliability.  The lower profile parts reduce the chance of 
breaking components when handling the board is reduced. 

4)  Implementation of Wiring Harness 
To make for easier integration and improved signal integrity, 
the use of a wiring harness is highly recommended.   
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