

Mobile Node Localization and Searching Project

May 8, 2006

Prepared for: Dr. Kevin Wedeward
 Dr. Aly El-Osery

Prepared by: Ivan M. Bow
Mathew E. Briggs
Phillip J. Darrow
Rhett A. Lawrence
Darla J. Le Blanc
Chris B. Whited
Mike M. Zaw

 2

Table of Contents
Abstract………………….. 3
Introduction…………….... 3
Localization…………….... 3
Sensors…………………... 5
Programming…………….. 6
Chassis…………………… 7
Power…………………….. 7
Printed Circuit Board……. 7
Conclusion……………….. 8
References……………….. 9

 Appendix A: Chassis Assembly
 Appendix B: Block Diagram
 Appendix C: Node Schematics
 Appendix D: PCB
 Appendix E: Receiver Schematics
 Appendix F: Budget

 3

Abstract—This paper explains a sensor network of mobile

nodes with wireless capabilities. The nodes use a MicaZ
microcontroller to communicate wirelessly with a base-station.
The nodes localize using ultrasonic sound transmissions and
Time Difference of Arrival. The task of the nodes is to locate a
black box within a searching field. A random searching method
is performed, and infrared sensors combined with a bumper
switch system are used to locate the black box.

Index Terms—localization, infrared sensing, robots, search
methods, ultrasonic sensing.

I. INTRODUCTION
ur design project is in the area of mobile sensor networks.
The problem was to design a sensor network of mobile

nodes which could travel an area in search of an object. The
search area is a 3m x 3m walled-in arena with white walls, and
the missing object is a 30cm x 30cm x 30cm black box. The
nodes/robots are to be randomly placed somewhere in the
searching field, and with no prior knowledge of their position
they should localize themselves with respect to the field. The
nodes search for the black box. After one node locates the box,
the remaining nodes should also converge upon it.

A. Design Requirements
 We were provided with 4 MicaZ microcontrollers
(small microcontrollers with wireless communication
abilities), an interface board to connect the MicaZ to a
computer, and 3 motor kits with wheels. With these objects
and a $250 budget we began our project.
 We were required to have at least 2 mobile nodes in
the field with independent searching abilities. These nodes
could only communicate wirelessly through the MicaZ. A
Base-station located outside the field could assist the nodes in
localizing and other tasks. After being placed in the field, the
nodes should localize in real-time. Another project
requirement was the design and implementation of a GUI
(Graphical User Interface). This GUI needed to display the
searching field as well as the nodes within the field. The GUI
was required to update the node locations at a refresh rate of 2
seconds, and once the nodes locate the black box it should also
be displayed on the GUI.
 This paper analyzes the approach we took to solving

Manuscript received May 8, 2006.

this problem. Our localization method, searching approach,
hardware design, and programming are all explained. A
general block diagram of our overall system is included in
Appendix B.

II. LOCALIZATION

A. Concept
 Localization is an integral part of this project.

Initially we considered localization using an RF system, but
this approach is too inaccurate for use in small areas.
Ultrasound was decided to be a good alternative. Upon
consideration of the design requirements we decided that each
node should transmit ultrasonic waves in a 360º circle.
Transmitting a full 360º enables quick and reliable localization
of multiple nodes in short time periods. To enable each node
to transmit in this pattern, an aluminum cone was mounted
directly above the transmitter as shown in Figure 1.
Aluminum cones were donated to our group via the Energetic
Materials Research and Testing Center Machine Shop. The
transmitters were placed on each mobile node, and four
ultrasonic receivers were positioned at each corner of the 3m
testing area. To avoid the problem of clock synchronization
our localization technique uses a Time Difference of Arrival
(TDOA) method.

Fig.1. The cone reflects the sound waves to create a 360º transmission of

ultrasound.

Mobile Node Searching and Localization
Project (May 2006)

Ivan Bow, Matthew E. Briggs, Phillip J. Darrow, Rhett A. Lawrence, Darla J. Le Blanc, Christopher
B. Whited, Michael M. Zaw

O

 4

After researching TDOA methods [1], a non-linear,
2-Dimensional model was created in MATLAB and used to
calculate each node’s position. This original design used the
solve function of MATLAB to take the non-linear equation
and solve it. The first ultrasonic receiver to receive a signal
and the two adjacent receivers calculated the position of the
node. The inaccuracies in this calculation required about 20
samples per positioning to get a reading accurate to
approximately 30 cm. The multiple samples necessary caused
the calculations to take from 10 to 15 seconds per coordinate.
These limitations did not allow this method to be used and still
produce the required two second refresh rate.

B. Implementation
With this new realization in mind, the localization

team began work on obtaining quicker and more accurate
calculations. The original circuit for the receiver and
transmitter began with an ultrasonic switch [2]. This switch
does not require any information about signal strength, it only
registers that a signal is received. In order for TDOA to work
accurately, the sensitivity of the circuit must be very high.
This high sensitivity means that the circuit can be vulnerable
to outside noise. The receiver circuit has a potentiometer on a
comparator to allow for sensitivity control of the design, and
the circuit was compactly built to cut down on noise. Even
after this, our localization output was still unreliable and
would sometimes produce seemingly random numbers. The
transmitter circuit also needed to be analyzed.

 The transmitter is another part of this ultrasonic
switch. It uses a 555 Timer to create a 40 kHz square wave to
run the ultrasonic transducer [1]. The power to the entire
circuit, including the 555 Timer, was cycled to create a stop
and go transmit of the ultrasound. A problem we discovered
with this circuit was that the 555 Timer did not always start on
a 40 kHz wave. Due to the capacitance of the circuit, it could
take up to 10 ms to stabilize to 40 kHz. This 10 ms period
could produce errors in localization almost as large as the 3m
arena.

 To solve this problem, the 555 Timer was given
power at all times of operation. Now a new method of cycling
the transmission was needed. Since the transmit enable line
from the MicaZ is only 3V max, it could not be used with a
FET or BJT to switch the circuit on and off directly, since it is
all run on 9-11V. To cure this problem, a BJT-FET series was
created and used as a switch for the transmission line. The
BJT’s collector is connected to 9V via a 10k resistor, and its
emitter to ground. When the BJT is off, 9V is sourced to the
output, whereas a lower voltage is sourced when the BJT is
on. The collector is then connected to the gate of a MOSFET
and the drain of the MOSFET is connected to the transmission
line right after the 1k resistor, and its source to ground. This
set up allows the MOSFET to bring the voltage right after the
1k resistor to ground when it is on, regardless of whether the
555 Timer is transmitting or not. Thus, when the MicaZ
transmission line is 0V, the BJT is off and the MOSFET is on,
bringing the transmitter line to 0V and not transmitting. When
the MicaZ sends a 3V signal to the BJT base, the BJT turns on

and the gate of the MOSFET grounds, turning off the
MOSFET and allowing the transmitter line to be what it likes,
transmitting the 40 kHz square wave to the transducer. After
this problem was solved, there was no delay difference
between the transmitter and receiver. This enabled our
calculations to be accurate and reliable.

C. Localization Programming
Further localization problems lied mainly in

programming. The HCS12 microcontroller used its input
capture pins to receive signals. When these signals were
received the HCS12 stored a counter value for each received
signal. Then the time difference of the counter values was
taken and sent over the serial port. After a certain length of
time, the HCS12 then used an output port to reset the receiver
circuitry via BJT’s used as switches. Once MATLAB
received the values, it used a formula that takes 2 time
differences and calculates the x and y coordinates for the node.
The equation is shown below where ∆t is the time difference
of the current receiver and the initial receiver, x and y are node
coordinates, xn & yn are the current receiver coordinates, and
x0 & y0 are the initial receiver coordinates.

∆t = √((x - xn)2 + (y - yn) 2) - √ ((x - x0) 2 + (y - y0)2)

This equation is used twice to actually calculate the position of
the node. The first uses the time difference and coordinates of
the left adjacent receiver to the initial receiver, and the second
uses the right adjacent receiver. Then MATLAB uses its
‘solve’ function to take the two equations and find exclusive x
and y values. The problem here was that the third time
difference could not be used because the equations were very
exact and the third time difference would have to be exact for
the equation to work, otherwise MATLAB would give an
unsolvable function error. This function was still slow and
was able to only give one coordinate per pulse.

To overcome this problem the ‘syms’ function in
MATLAB was used, the equations that were used to solve for
the coordinates were plugged in with its variables unsolved.
Then the program produced a long and drawn out equation
that could be used just the same as the original, but was only
good for that one receiver. An equation was obtained using
the first ultrasonic receiver to receive a pulse and the time
difference in the ultrasonic receivers to the adjacent right and
left corners of the box. Due to the basic symmetry of a square
area, the same equation can be used by ‘rotating’ the 3 m area
so that the second receiver is in the first receiver’s position.
Thus our final method evolved to use one equation no matter
which receiver received first. Once the coordinates are found
using this equation, they are simply shifted such that it fits our
GUI assignments. This quick and linear equation was easy to
implement and from this point forward the Python
programming language was used for localization. It was
found that for one pulse, all four receivers gave roughly the
same coordinates no matter which one received first. The
code uses this and with one pulse, four coordinates are found
and averaged to get the best results and most accuracy.

 5

 Our receivers require a direct line of sight to the
transmitter. Therefore, if one receiver was blocked, the data
was ruined. To assess this problem a failsafe was
implemented in the programming so that if a time difference
exceeds the threshold value required for the ultrasound to
almost traverse the box from corner to corner, a flag is set and
the receiver number is stored. Then the program determines
which receiver is opposite the blocked receiver and only uses
data from that opposite receiver and the two adjacent to it.
This makes the calculation a little less accurate because it does
not have the average of four coordinates, but it is better than
having bad data or no data at all if one receiver is blocked. If
there is more than one time difference that is beyond this
threshold, another flag is set and no calculations occur. The
base station is given an error message informing it of bad data
values.

D. Localization Hardware
 After the program was finalized, the system needed

to be fine tuned to work to the best of its ability. To get the
best signal quality and accurate localization, the aluminum
cones need to be exactly centered over the transmitter and
level. The first method to mount the cones on the chassis used
four rods to hold the cone above the transmitter. Upon testing,
we discovered that the rods could block the signal if they
directly lined up with one of the receiver’s in the corner of the
3m field. That receiver would not receive a straight signal, but
rather a reflection, giving bad data values. For this reason, the
final design uses a wire mesh (or gutter guard from ACE
Hardware) to hold the cone above the transmitter. A problem
with this design is that the mesh is not as sold as the rods, and
the cone can move slightly around the transmitter. It is
required to level and center the cone by eye, which introduces
inaccuracies.

 Another hardware issue we encountered was
mounting the receiver transducers. We began by using foam
taped into the corners of the field, but this was very unstable.
Also during final testing we discovered that when the black
box was placed in the field it blocked our signals. So for the
final demonstration, we chose dowel rods to hold the
transducers about 91 cm above the floor and pointed down at a
30º angle. This increased our line of sight between the
transmitters and receivers, but introduced a 3-Dimensional
factor to our calculations. Even if the node was in the exact
corner, it still had to travel about 70 cm to the receiver. Thus,
as the nodes got closer to the corners, our localization was less
accurate. We used a linear equation to correct for this. This
made the center areas near the walls less accurate, due to the
fact that the linear equation pushed the limits outside the field.
This makes the nodes appear at the edge of the box even if
they are not quite there yet. Time constraints prohibited us
from fully accounting for the 3-Dimensional difference and
with more time, better calculations could be used.

E. Localization Results
 In the end, the accuracy for an immobile node could

be 3-5 cm (before we raised the receivers and introduced a 3-

D calculation error). For moving nodes we obtained 10-20 cm
accuracy. Once the moving node stopped, the accuracy
pinpointed once again to an accurate position. When
displayed on the GUI, a moving node’s position could be
tracked. A stationary node would display at almost the exact
same position after each refresh, unless an error was
introduced into the receivers such that one of the data points
was bad or thrown out. The scalability of this method of
localization is only limited by the reception of the receivers.
However this design could be implemented into RF systems
for larger scale. If a larger area is used, the only changes
needed in the equations are to use the correct size of field and
to update the array of positions for the receivers. The equation
could even be calculated in such a way that the positions of
the receivers are scaleable with one equation. For our
purposes it was more efficient to use our current equation due
to the unchanging size of the field.

III. SENSORS
 Aside from the ultrasonic sensors for localization, we

used three different types of sensors on our mobile nodes.
These were infrared ranger sensors, open center encoders, and
push button switches.

A. Infrared Sensors
 After localization, our primary concern was object

location and obstacle avoidance. For this we needed sensors.
We considered many possibilities such as photo sensors,
ultrasonic rangers, laser range finders, and infrared sensors.
We dismissed the use of photo diodes because they do not
have the range we require. Ultrasonic rangers could not be
used to measure distance because they would interfere with
our localization method. Laser rangers were too expensive for
our project. Our final decision was to choose infrared (IR)
sensors. The infrared sensors, GP2Y0A02YK, we picked have
a measuring range from 20 cm to 150 cm. They provide
precise detection of distance and output an analog voltage
which could be directly connected to the MicaZ with no
additional circuitry needed. Also, the price for each unit was
well within our budget. We used these IR sensors for obstacle
avoidance and object detection. They integrated nicely onto
our mobile nodes and worked quite well.

B. Encoders
 The second type of sensors we used were open center

encoders. We looked at a few types of encoders before we
chose to use open center, P12319-ND, encoders. Some of our
earlier considerations were optical encoders and surface mount
magnetic binary encoders. These were dismissed due to
hardware mounting difficulties. We intended to use the open
center encoders to keep track of the nodes’ movements and
assist in updating the GUI at the required refresh rate without
constantly using the ultrasonic localization. These encoders
have two output channels, phase A and B, and these particular
encoders have 15 pulses resolution. By comparing the two
phases, A and B, and which gets triggered first, we can
determine the direction of the nodes’ movement, forward or

 6

backward. The encoders are mounted on each wheel. They
track of each wheel’s speed, and theoretically we could
synchronize the speed of both wheels using pulse width
modulation. They are also intended to keep track of which
direction the node turns as well as the angle of the turn the
node made. In practice, the encoders did not work very well
with our particular situation. The slick tiled floor of the arena
caused the wheels to often spin/slip without actually moving
the robot. This is another area of the project that could have
been improved on with more time. In the end, we did not use
the data from the encoders.

C. Push Button Switches
 The third type of sensors we used were push button

switches. We used these switches primarily for object
detection. Since the IR sensors’ readings are unreliable from 0
to 20 cm, we needed something to compensate for that region.
We mounted these switches on bumpers as a fail safe device
for object detection. Each node had four switches, two in
front and one on each side of the robot. Their outputs were all
connected together and sent through an RC circuit for
debouncing. These switches worked well with our mobile
nodes. Also, the switches and IR sensors provided some
redundancy in objection detection.

IV. PROGRAMMING
The programming team for this project had the job of

writing all the glue that made all the hardware subsystems
interact to meet the project's two main goals localization and
searching. To make the code as readable as possible and to
keep make modular coding a reality it was chosen to adopt an
object oriented software design. This meant creating objects
and therefore classes to support said objects. Programming can
broken up into several parts namely MicaZ programming,
HCS12 programming, low-level GUI, and high-level GUI.

First the MicaZ programming must be done under the
Tinyos architecture and therefore in the language nesC. This
new architecture and subsequent language required quite a
learning curve to be comfortable with programming for it. In
addition, applying the aforementioned object oriented
programming model presented some challenges. The
programming for the MicaZ can be further divided into
loosely defined modules. The first and lowest module was
named Drive. This module as the name suggests controlled all
the micocontroller code which governed the driving the node
around. This involved writing code which implemented PWM
and at the same time as sending the correct signals on the
control lines to the H-Bridge. This module was quite easy to
implement as the strategy was adopted to use the underlying
Atmel layer to directly access pins and other important
registers. The most difficult challenge for this module was
figuring out the interface description code for the Tinyos
compiler.

The next MicaZ component which was implemented
was called Node. This is what could best be described as a
main object. Therefore this object called all the methods
mentioned above in the discussion of the Drive module. This

module unlike the Drive module needed to take advantage of
many of Tinyos's features. Node could be further divided in
two major components communications and data acquisition.
The communications for this module relied on the
GenericComm interface provided by TinyOs. The
communications for the node programming actually plays one
of the most integral roles in driving the operation of the nodes.
This is because the Node module actually implements an event
driven design model. This means that if no commands are
sent then the object does nothing. The model limits some
features that might be handy such as an automatic bumper kill
switch. However, given the timetable for our project and the
necessity for easy debugging and quick changes it was decided
that pure event driven was fine to complete the goals of this
project. The sensor code was relatively simple as there were
existing examples for all the various types of input that were
taken in.

Next, the HCS12 programming was quite simple as
all it did was capture time differences and send them to the
computer via serial UART (Universal Asynchronous Receiver
Transmitter). First the there needs to be a justification as to
why to use the HCS12 rather than rely entirely on the MicaZ
as an exclusive base-station. This was done due to the on
board hardware that the HCS12 includes but the MicaZ lacks.
With the input capture pins on the MicaZ there is no latch to
hold the values so the ISR must be relatively fast. By itself this
is not necessarily a problem, except that the localization needs
as accurate times as possible. In addition, during periods of
heavy communication via the radio the ISR may not be as
predicable as before and therefore the probability of missing
the aforementioned deadline is increased. In summary, to
implement the data acquisition the input capture functions of
the HCS12 were used. Then to transmit the data simple
Debug12 printfs were used.

Next, the low-level GUI implemented all the
hardware interfacing needed for this project. The two pieces
of hardware which communicated with the computer were the
MicaZ base-station and the HCS12. The HCS12 was quite
easy to implement as the data was packed into parseable
strings which were then fed to the high-level GUI. The MicaZ
base-station was a bit more complicated as it required the
packing and unpacking of packets. This required quite a bit of
error checking as well as a good amount of research to get the
packets absolutely correct. Note that to communicate with a
node this module was passed an address so that the address for
the nodes were absolutely an abstract id not particularly hard
coded in any fashion.

Finally, the High-level GUI allowed for interesting
and user interactive features to be implemented with ease.
One of the objects contained within the high-level GUI
category is the Node class. This class of objects implements
all the features available through the corresponding MicaZ
module. This includes drive functions and sensor readings.
The main purpose of this class is to allow the random
searching algorithm to be written in high level human readable
format. An example of this is to move an instantiated "Node
node1" forward. All one has to do is simply call the forward

 7

method in the following manner:"node1.forward(...)." Using
this interface the random search algorithm can be easily
implemented. The concept behind our searching algorithm is
that when the node determines it is within 20cm of an object
the program accurately calculates the nodes position. If the
node position is within 30cm of a wall then the sensed object
must be a wall. The node then turns a random angle and
continues under the same parameters. However, if the node
encounters an object and determines that is not less than 30cm
to a wall then that object must be the missing black box. A
small correction subroutine is needed to check to make sure
the box that it found is not really another node. This is done by
simply calculating the remaining nodes positions and
comparing to the found box.

In addition, the graphics for the GUI are implemented
in a suite known as TkInter or Tk. This allows the normally
command line driven python to turn into a graphical interface
that any windows user would be comfortable using.

In conclusion, the programming for this project was
not as difficult as some might think. However, without the use
of standard design strategies, the actual coding could turn
from well structured and easy to write into the ever feared
spaghetti code that is found in many failed programming
projects.

V. CHASSIS
 The components of our chassis were included in a

two level structure. The first level held our gear boxes, MicaZ,
and H-Bridge while our second level held our bumper
switches, printed circuit board, the main 9.6V battery, and our
aluminum cone. Our chassis allowed for easy expandability
and room for large changes in the design. However, it had
difficulties with flat tires, wheel slippage, and gear box speed
variations between the two tires. In future use, the provided
wheels should be replaced by heavy duty wheels which can
hold more weight and grip more easily. Instructions for the
assembly of our chassis with necessary parts are included in
Appendix A.

VI. POWER
Our chassis required 3 different power sources. A

9.6V unregulated voltage, a 5V regulated voltage, and the 3
volts needed for the MicaZ. Our power system includes a 9.6
volt nickel metal hydride battery. This battery is rechargeable
in 6 hours and provides 1300 milliamp hours. The 9.6 volts
are regulated down to 5 volts as shown in the voltage regulator
schematic of Appendix C.

The unregulated 9.6 volts was used for the ultrasonic
transmitter and the transmit enable circuitry. The infrared
sensor, the bumper switches, the encoders, and the H-Bridge
all required the 5 volt input. The 9.6 volts was regulated down
to 5 volts using a 7805 voltage regulator with a heat sink.

The MicaZ microcontroller runs off of its own 2 AA
batteries which in series provided 3 volts. The life expectancy
of the AA never came into play as they never required

replacement. Basic AA batteries usually provide about 1800-
2600 milliamp hours of playtime. If the MicaZ allowed for a 3
volt input, a regulated 3 volt input would be the preferred
supply voltage for the microcontroller. By regulating the 9.6
volts down to 3 volts for the MicaZ, we would be capable of
running the entire chassis off of one battery.

Depending on the components being tested, the
actual lifetime for the 9.6 volt battery was around 2-3 hours
for our design. These numbers could be enhanced by using a
low dropout voltage regulator.

VII. PRINTED CIRCUIT BOARD

A. Board Fabrication
 As each node evolved, circuitry was added to enable

the various sensors and components to function properly. This
resulted in a large amount of wires and components needing
placement on each node. As a solution to this “rats” nest it
was decided to fabricate a PCB board. This decision was
made since moving to a PCB board eliminated any “rats” nest
wiring, created a professional look, saved space on each node,
and aided in the placement of components. In order to realize
a PCB board the following steps had to be performed:

1) Design
 The first step in creating the PCB board was the

design process. First the desired circuits were analyzed for
best placement. These circuits include the voltage regulator,
transmitter, bumper switch, and the encoders. Once all the
circuitry was tested for full functionality drawings were
created of possible component layouts on various board
sizes/board layers. Components from the following circuits
were placed in this design: A board size of 3” wide by 4” tall
was chosen. This size allowed for easy placement on each
node while allowing extra space for the 9.6V battery and any
unseen additions. It was initially decided to use a single sided
board for ease of manufacturing. It became apparent
thereafter that due to the number of components and nets that
a double sided design would be necessary.

 The size of the board and the number of layers
affected the localization ability of each node. In order to
achieve accurate ultrasonic dispersion the aluminum cone had
be directly above the transducer. This was accomplished with
the utilization of computer aided measuring. The ultrasonic
transducer was placed in the center of the board. Given the
size of the aluminum cone, it was determined that mounting
holes needed to be placed at a distance of 1.3774 inches from
center every 90 degrees. At each of the measured points a pad
was placed that would later be drilled out to allow for
hardware installation.

 For input/output (I/O) operations 2 twenty-pin,
female headers are used. These connectors are placed on the
edge of the board near the bottom. The input connector serves
as an interface between the sensors and the board. The output
connector serves as an interface between the MicaZ and the
board. Both connectors contained power pins in order to
enable later expansion.

 Next, the remaining components were placed in the

 8

design around the mounting holes and transducer. This
included voltage regulation, bumper switches, and encoders.
All circuits that contained the same nets were placed in close
proximity to each other. At this point the circuit layout was
created using Altium Protel DXP 2004 SP2. Trace widths
were set to be 25 thou (1 thou = 1/1000 inch). Power trace
widths were set to 30 thou. Electrical clearance was set to 15
thou. The software and equipment used to realize the design
was property of the National Radio Astronomy Observatory
[3]. When the layout was complete, gerber files were created
that were then changed to bitmaps (See Appendix C). The
final board can be observed in Appendix D. The bitmaps are
necessary for step 2, printing.

2) Printing
The second step in the board fabrication was the

transfer of the design from the computer to blue paper. Using
the electrical engineering department’s facilities the bitmaps
were printed on blue paper. The print job was scaled to 3” by
4” to fit the board size. Each bitmap was converted to
grayscale and had the contrast increased. This allowed for the
best transfer to paper. The bitmap files printed were
“JuniorDesignBottomLayer.bmp” and
“JuniorDesignTopLayer.bmp”. (See Appendix C). It is
important to note that one bitmap is mirrored. This enables
the two layers to be aligned when transferred.

3) Design Transfer
 Three pieces of 3” by 4” PCB board were then cut.

Using an SOS pad, any oxidation was removed. The board
was then cleaned. Heat was applied to transfer the design to
one side of the board. Once transferred three holes were
drilled in known locations in order to align the two sides. The
second side was aligned with the known hole locations using
wires. Once aligned the second side was transferred. At this
point the board was inspected for any transfer defects. The
first board that was transferred was a learning experience. All
of the traces near the edge of the board failed to transfer.
Simply drawing in the missing traces with a Sharpie fixed this
problem but left an unappealing final result. The second and
third boards did not encounter any errors in the transfer
process. When the transfer process was complete the boards
were etched.

4) Etching
 Etching is a process in which excess copper is

removed from the PCB. This is done with a ferric chloride
chemical bath. All of the places where a design has
transferred are safe from the chemical reaction leaving only
the desired circuitry remaining. It was quickly learned that
since the board is double sided, it must be regularly turned.
This process took approximately 25 minutes per board.

5) Tinning
 After the etching stage all that is left on the board are

copper traces. In order to ensure functionality and longevity
each trace was then tinned with solder. Tinning was
performed at 700 degrees Fahrenheit.

6) Drilling
 Holes were drilled in the tinned board to prepare for

component placement. For all resistors, capacitors, and vias, a

size #69 drill bit was used. All power pads, connector pads,
regulator pads, and FET pads were drilled with a 1.15 size bit.
The first board was drilled without any pad preparation and
resulted in many inaccurate but functional pads. The two
successive boards were drilled with hole preparation and were
more successful. It was noticed that with a two sided board if
the drill was applied too fast the pad on the other side would
be lifted off the board. This was fixed after the first
occurrence

7) Component Placement
 All components were then placed on the board using

the bitmap “JuniorDesignTopOverlay.bmp” as a reference
(See Appendix C). All resistors, capacitors, and BJT’s were
easy to place. The FET, voltage regulator, 555 timer, Schmitt
trigger, and connectors were more difficult due to inaccuracy
in hole drilling. The functionality was never a problem with
the difficult component placement. This difficulty was
consistent through the fabrication of all three boards. The
ultrasonic transducer was placed on the opposite side of the
board than the rest of the components in order to allow for
unobstructed transmission. One error was encountered with
capacitor C8. It has the value of 680pF. This value was not
available through the electrical engineering facilities. In order
to accommodate for this value two capacitors were used in
parallel, one on each side of the board.

8) Testing
 Once a board was fully populated it was tested for

functionality. This was done by first performing a continuity
test to check for short circuits and open circuits. Each of the
three boards was verified to have continuity. Power was then
applied to each board to ensure correct operation. Using a
multimeter the power was checked at each +5V net and +9V
net. This included all power pins on the input and output
connector. All boards were verified working. At this point
the ultrasonic transducer had to be tuned to the correct
frequency for optimal operation. Each board was tuned to 40
kHz by adjusting the 100 kΩ precision pot and observing the
output on an oscilloscope. Tuning was the last required act on
each board. The boards were now ready to be mounted on the
chassis.

VIII. CONCLUSION

A. Design Strengths
The strengths of this design can be summarized in

four main topics; localization method, modular software
design, integrated circuit board, and expandability.

1) Localization Method
The dominant strength in this design was the ability

to adapt a TDOA localization method from the wall used radio
frequency spectrum to the less used ultrasonic range. By
making this adaptation this design is easily scalable from a
small 3 meter by 3 meter box to a playing field that is much
larger. Along with the scalability of the localization method,
TDOA also allows there to be very little communication
between the base-station and the mobile sensors. The reason
for this is due to the lack of synchronization that is needed
between the base-station and the mobile sensors.

 9

2) Modular Software Design
With the modular software design, troubleshooting of

the individual parts of the robot are made substantially easier.
Each sensor circuit can be tested very early in the design phase
with it own module software. This allows for trouble shooting
of hardware and software before integration occurs. Once a
robot is completed, troubleshooting of the individual parts can
still be accomplished using the same modules.

3) Integrated Circuit Board
By using an integrated circuit board that contains all

of the circuitry need for the entire mobile sensor the design is
easily reproducible. Also having all of the signals on one
circuit card assembly signal integrity is easily controlled. An
integrated circuit board is essential to having a robust and
reproducible design.

4) Expandability
When trying to produce a working prototype mobile

sensor one thing is constant, and that is change. For this
reason it is imperative to have a platform that is easily
expanded. The expandability also allows for changes in
customer requirements without taking a large hit in cost or
production time.

B. Second Generation Recommendations
The following are a list of recommendations for a

second generation build of the mobile sensor. These
recommendations are intended to make the reliability, ease of
production, ease of hardware debugging, and functionality
better.

1) Chassis Weight Distribution
To eliminate tire slippage the weight distribution of

the chassis should be improved. Recommendations are to
move more of the weight over the wheels of the chassis. This
could be done by moving the battery mount to the front of the
chassis while still keeping the weight of the cone close to the
wheel base.

By improving the weight distribution of the chassis
the problem of wheel slipping can be improved. This will in
turn improve the usefulness of the wheel encoders. The more
accurate these encoders are the easier it is for the program to
keep track of where the mobile sensor is.

2) Adding Test Points to PCB
The hardware for this design is sometimes difficult to

trouble shoot because most of the parts are not accessible to
test probes. To make it easier to access, test points should be
added to the sides of the integrated circuit board.

3) Using Surface Mount Components
By changing from through hole parts to surface

mount parts, both reliability and ease of hardware debugging
will be improved. By going to surface mount parts and
moving them to the front of the board (same side as
transducer) access to signals with test probes will be easier.

Surface mount parts will also allow for better
reliability. The lower profile parts reduce the chance of
breaking components when handling the board is reduced.

4) Implementation of Wiring Harness
To make for easier integration and improved signal integrity,
the use of a wiring harness is highly recommended.

REFERENCES
[1] “Time Difference of Arrival Principles” May 2006,

http://www.era.cz/en/tdoa.shtml
[2] “Ultrasonic Switch,” May 2006,

http://www.reconnsworld.com/ir_ultrasonic_ultraswitch.html
[3] http://www.aoc.nrao.edu/gold/

