Synchronized Box Pushing

Mark Milburn
Derick Monroy
Tanner Oakes
Chad Stephenson
Vincent Urias

May 4, 2007

Abstract

In this paper, we will discuss the implementation, design and eval-
uation of the Junior Design Project (EE382). This paper discusses the
process that was developed to create a wireless system, composed of to
two MicaZ motes, that capable of sensing a box and bounds of the lane,
while transmitting information back to basestation all the while imple-
menting an autonomous control mechanism using NecC and the TinyOS
architecture.

Contents

1 Introduction

2 Project Specifications
3 TinyOS

4 Problem Description

5 Coordinated Behavior
5.1 Approaching the Centralized Model
5.2 Deciding on the Decentralized Model

6 Applying PI Loops

7 Project Solution Narrative
71 Gettingtothe Box
7.2 Movingthe Box o
7.3 Black Line Detection 0 oL

8 Implementation
8.1 Optical Sensors o
8.2 Directional Sensor oL
8.2.1 Analysis of the Tilt Bar
8.3 Angle Calculations L.
8.4 Speed Sensor
84.1 Testing PI.
8.5 Chassis Design o
85.1 Prototypel
8.5.2 Prototype 2
8.5.3 Final Design
8.6 Wirelss/Serial Communication

9 Analysis
9.1 Limitations of TinyOS

10 Conclusion

11 Appendix A: Budget

12 Appendix B: Power Budget
13 Appendix C: Robot Pictures

14 Appendix D: Design Pictures

20
21

21

22

23

24

26

List of Figures

0O Ui Wi

Initializing the motes Lo 7
First mote hits 8
Second mote hitso 8
Basestation signals both to resume 8
Moving the Boxo oo 9
Continue Moving the Box 9
Basestation signals both to resume 10
Component Overview 11
Basestation Component Architecture 12
Mote Components 12
Optical Sensor Circuit 13
Tilt Bar 14
Angle of Exror oo 16
Mouse timing diagram 16
Structure of a mouse movement data packet 17
3D Model of Robot L 19
The two robots 20
Side View e 24
Front View 24
Back View 25
Tilt Bar 26
Chassis o 26

List of Tables

1
2
3

Budget 22
Power Budget for Robot 23
Power Budget for Micaz 23

1 Introduction

As our society becomes increasingly more digitized, there has been an increasing
emphasis on communication systems and as future engineers, it is a necessity to
understand, implement and analyze these systems in order to effectively compete
in this global economy. A quickly emerging area in communications is wireless
communications. With the advent of wireless communication, we see that it
is a goal that many systems are trying to transition off the inherently limited
wired world. For instance, in the area of cell phones, the whole idea rests on the
fact that people can be mobile without having to worry about lugging around
wires with them. Without the hindrance of wires, wireless communications is
certain to be the future. With that in mind, research in the field of wireless
communications has been increasing steadily. Every day new algorithms and
applications to wireless devices are being discovered. One such application is
this year’s junior design project to test and evaluate the ability to coordinate
wireless devices, nodes, to move an object, a box a set distance while staying in
to confines of a give track.

The goal of this project concentrates on the extension and evaluation of a wire-
less system capable of sensing both the box and bounds of the lanes, transmission
between the motes and the basestation and autonomous control using complex
sensing devices using the wireless sensing nodes referred to here after as motes
and the lightweight programming language NecC.

In this paper, we will discuss our team’s implementation and design process in
creating our robots that utilized the use of a machined tilt bar, optical sensors,
a PS2 mouse, and the MicaZ.

2 Project Specifications

The goal of this project are to leverage the existing data processing and robust
wireless communication abilities of the MicaZ motes using the existing TinyOs
infrastructure to carefully design and evaluate potential designs by using our
previous few years of electrical engineering to meet several key design elements.
Our project falls within the wireless sensing and control domain. We were given
the task to design a pair of robots that were to work autonomously to push
a box from a designated start line to the finish line while remaining within
the confines of black line bounded lane. The motes had to coordinate and
communicate between each other and the basestation. The motes would not
know their start position relative to the box, they would not know what side of
the bar they would start on, and all the coordination code must reside locally on
the motes. Finally, there has to be a GUI that provides a sensible display of all
the commands that are sent between the robots and themselves, and between
the basestation and the robots. The hard specifications of the project were as
follows:

e Width of the lane will be 2 meters long

e Box width would be 1 meter long
e Robot size was a maximum of 6in x 6in x 6in

In order to realize a complete solution to this problem necessitated the following
to be done:

e Understand how TinyOS worked and operated
e Design hardware

e Design software to integrate both hardware and create an autonomous
control mechanism

3 TinyOS

TinyOS is a framework that enables the user to build programs and algorithms
from components that can be linked together to produce a lightweight, robust
program that can be uploaded on to a mote. The whole project is based on
an open-source development environment, which is based on the programming
language and model of NesC. There is a unique programming model that is
used in order to produce an ideology of optimized power saving and extremely
highly concurrency model which has its roots in the interrupt driven OS. This
OS implementation is specifically event-driven who’s primary goal is to reduce
the costly (both in time and money) services such as complex memory manage-
ment and allows for advanced interrupt system which condenses many of the
performance reducing implementations such as polling and switching. Although
there is reduced functionality such as complex math, support and inherent lim-
itations to the expandability of the OS make this a special purpose OS which
provides efficient wireless communications system and sensor collection.

4 Problem Description

At face value this problem seems very easy, two robots are placed somewhere
in between a lane and then meet a box and push it a set distance. However,
several key components that make this a complicated solution including wireless
communication, as well sensor integration, complex PID control loops among
other things.

The problem can be broken down into a several distinct steps that had to be
integrated and working together:

e Box detection
e Moving the box

e Line detection

5 Coordinated Behavior

Some basic coordinate behavior principles were evaluated and implemented in
this project. Coordinated behavior is used for a system of individual robots so
that the robots can communicate with each other in order to perform a specified
task, in our case there are three motes, two agents and one basestation that have
the task of locating and moving a box.

5.1 Approaching the Centralized Model

Initially there was thought into creating a centralized model in which the bases-
tation would calculate the speed, direction, etc for each of the motes. The
basestation is controlling both of the robots and is designated as the center of
communication and information for the entire system. This model would have
been good because much of the complex calculation that was initially brain-
stormed could be done by the laptop, which would reduce the computational
intensity on each of the local boxes. However, after some careful evaluation we
realized that a decentralized model would be more appropriate because of several
design issues. We thought it best that individuals agents in the system should
be treated as autonomous as possible and should not be directly controlled by
one agent. The first consideration was based on the fact that if we followed a
centralized approach it would force a computationally more intensive solution
to be developed because the system would have to handle the communication
between each of the motes, command oversight, and information management
so that the robots can operate optimally. It would also force a system that
would have to propagate long-range communications through the network and
can use relatively low power to communicate with the immediate neighbors.

5.2 Deciding on the Decentralized Model

Some of the net benefits that we realize out weighed the computational inten-
sity reduction. In the alternate model, a decentralized approach, allows the
each distinct robot to make local decisions and computations without the direct
guidance of an individual controlling basestation. One huge benefit is there is
a significant reduction in communication delays because it removes the clock
cycles and communication lags that was required by the MicaZ to receive the
communication and decide what its next course of action is. [5] Additionally
it allows for a completely autonomous configuration that allows each mote to
continue its course of action even if the other one were to fail which could ul-
timately jeopardize the entire task. The autonomous configuration makes the
individuals responsible for only themselves.

6 Applying PI Loops

The speed and direction of the robot is controlled using a PI control loop.
Feedback data is collected from the mouse and the tiltbar, and error values are

calculated from that data. The PI loop returns a PWM modifier value. The
desired speed of the robot is set as a certain number of y counts over a set time
interval, and the error is the difference between the measured y counts and the
desired y counts. This error is fed into both proportional and integral control
equations for the left and right wheel. The heading of the robot is set at the
desired value relative to where the robot started facing; the current heading is
maintained by adding the x count to current heading on each mouse read. The
error is the difference between the desired heading and the current heading, and
this error is run through a proportional control equation for each wheel. The
robot always tries to keep the tiltbar from turning, when the robot starts up it
defines the first tiltbar reading as the neutral position. When the tiltbar turns
it takes the turn value and puts it into a proportional control equation, the
desired speed is modified using the resulting value to slow down or speed up the
robot depending on what side it is on. By tuning the control equations correctly,
the robot can drive in a straight line while keeping the box from turning. The
equations were tuned by adjusting the gain for each equation one at a time until
the desired output was achieved.

7 Project Solution Narrative

In order to fulfill the project specifications above we created a solution based on
careful evaluation of sensors and inter-mote interactions. In this situation, we
see three key scenarios that dictate the operation of the motes: getting contact
with the box, moving the box, and ensuring that the motes stay in the lane.

/

.
./

Figure 1: Initializing the motes

e -

Figure 2: First mote hits

g -

Figure 3: Second mote hits

s

Figure 4: Basestation signals both to resume

7.1 Getting to the Box

The most fundamental portion of this project stemmed from the need for the
motes to be able to detect when it had encountered the box. We needed a
mechanism that was able to detect when the bar were exposed to the mote and
report back to the basestation that it did. We used the wireless communication
capabilities of the MicaZ to facilitate this. The first part of the process was
built around addressing the project specifications we were unable to determine
how far away or on what side of the track the motes would be placed on. First,
we decided that the motes would receive their direction from a wireless signal
initiated from the GUI. In order to ensure that the both were operational and
would start at the same time we implemented a three way and shake that would
prevent only one mote going toward the box and not having other one fail as
illustrated in Figure 5. After passing the handshake, they would both approach

Figure 5: Moving the Box
the box. Once one mote encountered the box, it would signal the basestation,
which will keep track of both of them and wait for the second mote to catch up

with it. How this occurs is visualized in Figures 6 and 7. Once both robots hit
the box the basestation, again send a go message that both motes will respond

to as seen in Figure 7.
.

Figure 6: Continue Moving the Box

Figure 7: Basestation signals both to resume

7.2 Moving the Box

Once both motes were moving the box it was the responsibility of each individual
mote to stay in contact with the box. In order to ensure this we created a
tiltbar that would provide a mathematically trivial way to detect the overall
movement of the mote. Based on the voltage difference of the potentiometer it
would also be used to detect and correct the directional movement of the MicaZ.
For example, we are not going to know which side either of the Micaz’s will be
on so we will just assume that one of the Micaz’s will be on some side initially.
After one mote hits the box, based on the feedback we can send back a message
to the basestation, which would keep track which side they are on.

The direction can be determined to be left or right side and once it meets the
box as it is move the tiltbar’s voltage, either positive, right, or negative, left,
would dictate what course of action to take. Based on the control loop we will
be able to in a relatively smooth way allow speeding up and slowing down of
each mote. For example, if after the robots were to make contact with the
box and the left mote were to speed up off the line, then the right mote would
increase its speed until it noticed that it made contact with the box again and
so on and so forth. The two motes can push the boxes at a paced rate until the
stop condition was sent by the basestation, which would be determined by the
user designating that the end of the track was met.

This part of the solution clearly show how this implementation utilizes the
decentralized coordinate behavior model between the two motes which removed
the complex system of latency ridden wireless communication between the two
motes to coordinate at a not so real time rate. This was especially important
because TinyOS was not meant to account for extremely high speeds needed for
the near real time reaction times we were seeking. The tiltbar is at the crux of
the decentralized model because the control loop dictates how fast or slow the
mote will be traveling based on the feedback that it receives independent of the
second mote or even the basestation’s input.

10

7.3 Black Line Detection

Here we evaluated several scenarios of worst-case situations that would prevent
the motes from reaching its goal. One major obstacle stemmed from the risk
that one or both motes crossing the black line, thus dictating that it was outside
of the bounds of the track. What would happen, if one mote crossed the line
would be an event would be triggered to stop the other mote until the first
mote came back into contact with the box. Here we would turn both motes at
the same rate back into the track, straighten out the motes and then continue
heading down the track.

8 Implementation

When implementing both the hardware and software for this project several
key design points were used as a guide for the majority of our decisions. Our
goal was to create a low budget, innovative, self contained modular design that
would showcase not only our skills as engineers but also our ability to create
out of the box ideas and make them a reality.

We tried to compartmentalize our design into several key components. First, the
collision detection whose purpose was to detect when a mote has encountered
the box that lead us to creating the tilt bar. Second was the speed control, whose
purpose was to detect how fast the MicaZ in order to provide a mechanism for
coordinate behavior, which leads us to cannibalizing a P/S2 mouse. Third,
the optical control whose purpose was needed to detect if the MicaZ had gone
outside the bounds of the black tape, which lead us to optical sensors. Fourth,
the chassis design to support each component mentioned above.

Az Tiltbar
H-bridge
Battery
Optical
Sensor ~
ouse
Optical

Sensor

Micaz

Figure 8: Component Overview
Finally, a wireless communication system was needed to support communication

between the motes, GUI and basestation. What this modularization provided
was an inherent model to not only integrate and test hardware but also software

11

and if by chance a system worked, it allowed the ability to swap out the system

with limited impact on the entire design.
- Send and Receive

Figure 9: Basestation Component Architecture

Figure 10: Mote Components

8.1 Optical Sensors

The initial design used photoresistors in combination with LEDs to detect
boundary lines. Boundary lines present a unique problem in this project. Not
only do the robots have to stay within some defined boundary, the box must
also be kept within these lines. Without an effective boundary detection system,
successful guidance of the box cannot be guaranteed. The group had several
concerns about implementing this design. The sensitivity to different lighting
environments, complexity of the input, time required for construction and the
need for constant recalibration drove us to evaluate other design possibilities.
Fairchild Semiconductor’s QRB1134 infrared optical detectors fulfilled our need
for a quick and easy-to-implement boundary detection system. The QRB1134
provides a simple digital output, has an easy to mount monolithic package,
requires little supporting circuitry, and is inexpensive in comparison to other
detection systems. Originally, the left and right photo output were fed into an

12

OR gate which was used to trigger the INT2 on the MicaZ. By feeding the left
and right outputs into GPIO pins RD and WR on the MicaZ, we were able to
recognize which input was fired. This became a problem because the MicaZ is a
high impedance input device. We solved this problem by feeding the individual
outputs of the photo sensors into OR gates. This provided our high impedance
output to drive the GPIO pins. The original software design utilized an inter-

]

=
=

COHN_FHC T

E miter

Figure 11: Optical Sensor Circuit

rupt service routine that triggered on the photo inputs. While this design was
able to trigger on optical events, it proved to be troublesome. Triggering of
the INT2 line on the MicaZ would often cause the unit to reset. We originally
thought that this was caused by the optical output feeding 5V DC into the
MicaZ that was operating at 3V DC. Implementing a voltage divider to pro-
vide a 3V output failed to solve the problem. The interrupt method was then
abandoned in favor of using the TinyOS timer system to poll the state of the
optical sensors. Interrupts would be ideal in a microcontroller scenario because
processor time is spent checking and processing optical input only when input
has been received. In contrast, polling simply checks in the input levels at some
specified interval. If input is not present, the polling routine simply becomes
wasted processor cycles.

Both polling and interrupts were tested by sweeping the sensors over a black
line. The LEDs were used to indicate when the MicaZ had entered into the
polling or interrupt routine, as well as which sensor was triggered. We found
that reset events could be detected by using a boot-up routine that toggled the
LEDs in a specific pattern before initializing interrupt or polling routines.

8.2 Directional Sensor

One sensor that the robots needed was a touch sensor. Instead of buying two
touch sensors to put on the front (one on the left and one on the right) of
the robot we decided to make our own. Having two sensors would let us know
whether the robot lost contact on either side; letting us know that the robot was

13

no longer going in a straight line. For our one-touch sensors, we attached an
aluminum bar to a 10Kohm potentiometer. We will take an initial reading of the
voltage across the potentiometer and from this; we will be able to tell when the
robot has engaged the box by the change in voltage across the potentiometer.
In addition, if the robots stop going in a straight line the bar will rotate with the
box, letting us know which way the robots are turning. We attached a spring to
the left and right of the tiltbar to restore it to its equilibrium state when the bar
rotates after engaging or when the robots are turning. We chose to make our
own sensors to save on money and thought that it would be better than having
digital touch sensors, which would only let us know whether it was touching,
or not. From looking at the reading, we should be able to decide how far from
straight the robot is in relation to the box.

Figure 12: Tilt Bar

The tilt bar controls the entire system by letting us know whether the robot
is veering in either the left or right direction. We correct the direction by
reading the voltage coming off the tilt bar and slowing down the robot that
is traveling faster than the other. This allows the other robot to catch up
and align the tilt bar for both robots. Before gluing the potentiometer to the
tilt bar, we calibrated the potentiometer to be approximately 5K Ohms, which
is the middle value of the potentiometer. We thought about using ultrasonic
sensors to detect where the box was but decided not to use them because of the
complexity involved with setting up the timers to run them. We would need to
have another timer to control the ultrasonic sensors, and that was unavailable.

14

8.2.1 Analysis of the Tilt Bar

The tiltbar is one aspect of the robot, which has a lot of influence on the overall
control of the robot. The tiltbar connects to the MicaZ voltage output to make
the following equations work. ADC,, is the analog to digital converter, which is
what the MicaZ actually uses. V;, is the voltage going into the AD converter
and V;..y is the reference voltage. Viq is the battery voltage.

ADC, = 1024 - V;,
V;“ef
ADCy - Vyey
Vin = 1024
1024 - V;
Viatt = =
ADCbatt
By setting Vycr = Vet We obtain
_ ADC’U : %att
Vin = 1024
ADC, - Vig
‘/i = =
ADCbatt

Vin will change as the battery dies, however the ratio of Va4 to Vj, will not

change as the battery dies.
Voate 1024

Vin ADC,
To make the resolution better than 0 to 1 we set our scale to be 0 to 1000 and
we end up with

Vit 1024000
Vin ADC,

8.3 Angle Calculations

The specifications given to us included that the robot would be placed behind
the box at a distance no greater than two feet. While being placed here the
robot will be pointed straight at the box, but this is not an exact measurement.
We needed to know how much of an angle we could be off by. Since our robot is
3.5 inches wide in the front, we used simple trigonometry to see how great of an
angle would cause us to drive straight and completely miss the box. Taking the
inverse tangent of 3.5 divided by 24 gives us a maximum angle of 8.30 degrees
that we could be off. Since this measurement is taken saying the robot will
be aligned with the edge of the box, we determined that this would not be a
problem.

15

3.5in

Figure 13: Angle of Error

8.4 Speed Sensor

The robots collect data on speed and direction by means of a PS/2 balled mouse.
Mice have two optical encoders built in and provide the circuitry for counting
the encoder pulses and transmitting them to a host (the MicaZ in this case).
The y-axis optical encoder is used to collect forward motion, the mouse is polled
at a constant time interval and the amount of forward movement is proportional
to the forward speed of the robot. The x-axis optical encoder acts as a direction
measurement, as the robot turns the x-axis changes relative to the direction of
the robot. It follows an arc on a circle and is proportional to an angle offset
from a reference point. Mice are designed to operate in either polling mode or
interrupt mode, and the resolution and sample rate of the mouse can be changed
as well. Mice start in polling mode with a resolution of four counts per mm with
a sample rate of 100 samples per second. [2]

DATA WO RD BIT
ETART ¢ y 1 STOP
BIT 1 1 u] 1 0 1 1 1 BIT

DATALINE_ . | —|_| u ;
CLOCK LINE } * § ; § | ; * | ; § ; * }

Figure 14: Mouse timing diagram

Communication with the mouse is done through the PS/2 protocol. There is
a clock line and a data line between the mouse and the MicaZ, and an open
collector circuit is used on each line for the MicaZ to read and set these lines.

16

To request data from the mouse the MicaZ pull the clock line low for about
100us, then pulls the data line low and releases the clock line. The mouse then
starts to generate a clock signal at 10 to 16.7 kHz and the MicaZ transmits
the data request instruction on the falling edge of the clock. The mouse sends
back an ACK on the data line to confirm that the message was received. Once
a data request has been sent the mouse starts the clock again and sends back
three bytes that are read on the rising edge of the clock by the MicaZ. [3] The
first byte is the mouse status bytes, which includes x and y overflow, x and y
negative, and mouse click information. The next two bytes are the number of x
and y counts from the last read. [2] In order to keep the robot within the six-inch
length requirement the front portion of the mouse was removed. This caused
all the bits in the status byte to be shifted to the left by one, and caused the
y-overflow bit to be shifted off so the speed has to be set such that the y count
does not overflow as there is no way to check if it has now. Code for the mouse

Bit 7 Bit6 Bit 5 Bit 4 Bit 3 Bir 2 Bir 1 Bit 0
Byte 1 | Y overflow X overflow| Y sign bit | X sign bit = Always 1 Middle Btn Right Bin | Left Btn
Byte 2 X Movement

Figure 15: Structure of a mouse movement data packet

was adapted from Mouse Painter Pro, a graduate project by James Yu and Jared
Clifton at Cornell University. Mouse Painter Pro is a microcontroller controlled
TV paint program where the mouse is plugged into a microcontroller. [1] The
code was modified to work on the MicaZ and to operate in polling mode instead
of interrupt mode, this involved rewriting most of the sending code and change
the signaling to the pins used on the MicaZ.

8.4.1 Testing PI

The control loop values were obtained through a systematic approach of adjust-
ing the gains until the desired response is obtained. [4] First, all gains were set
to their lowest values. The P gain was then increased until the robot started
overreacting to the feedback data, then the P gain was lowered until the robot
showed the desired response. Next the I gain was raised until the steady state
error in the robot’s speed went to zero. Because this is a discrete system, the
minimum reaction of the robot can be too much small errors, so an error band
was put into place to have the robot ignore errors this small. A similar approach
was taken to find the correct adjust value for the x-axis bang-bang control. The
adjust value was raised until the robot started displaying a very large reaction,
and then the adjust was lowered until the robot’s response was correct. The
tiltbar feed back was also adjusted in this way.

17

8.5 Chassis Design

We originally considered a basic rectangular shaped design for the chassis. The
idea was to have the robot’s chassis be mounted only between the wheels of
the motor. The dimension would consist of a width of the distance between the
wheels and a length that would extend to the limiting dimension requirements, 6
inches. We selected aluminum as the material to construct the chassis because
of its ability to withstand the loads that would be applied, the low density,
durability and ease of machining.

Once the addition of a front-end mounted tiltbar sensor was finalized, the length
of the chassis was shortened in the design to meet the allotted dimensions for
the project.

The early design began by using Autodesk Inventor 11 (a 3-D modeling program)
to produce a realistic model of the components that the robot we had in mind
would resemble. The program utilizes parametric modeling that is composed of
assemblies and components to build the 3-D model. Once we completed a design
idea, we modeled it to predict and correct immediate issues within the assembly,
such as alignment and clearance. Upon meeting these issues, the parts in need
of machine work were transferred to a drawing via the CAD program. The
hardware group and other machinists used these drawings to construct various
prototype and final parts.

The components of the robot were designed with care. The capability of and
relative ease of being machined were taken into account in order to alleviate
unnecessary difficulties during the process.

8.5.1 Prototype 1

The first prototype chassis was produced in the R&ED instrument room using
a mill machine. The shape was a solid rectangle and was six inches long, as the
front sensor had not yet been confirmed. Four .0150 holes were drilled into the
piece of aluminum to mount the motor and the h-bridge. The positions of the
holes were placed in such a manner that the motor’s wheel horizontal radius
is located as close as possible to the end of the chassis and the h-bridge could
utilize the same holes that the motor uses to mount. In addition to these four
holes, two larger holes were placed towards the front of the square chassis to
allow the wires to be run through the chassis. This chassis was good for initial
operational testing of the MicaZ and the h-bridge.

8.5.2 Prototype 2

The second prototype was also produced in the R&ED instrument room using
a mill machine. The shape was derived from the first prototype with the same
location of the .150 inch thick mounting holes. The design of the robot became
clearer after completion of the prototype tiltbar sensor. This caused the chassis
to be shortened to a length of 4.5 inches in order to have enough room for
the arms of the sensor to swivel. Instead of placing two larger holes in the
chassis design, we removed as much material as possible. There was no need

18

for the material in the middle of the chassis; no mounting holes were needed
in the center. We removed additional material from the sides of the chassis as
well. The design only placed material where it was necessary and consequently
became more frame-like. The design saves a few ounces in weight, as the robot
had become heavy with the addition of machined sensors, and we wanted to free
up energy for the racing aspect of the competition. We did not make any holes
to mount the mouse or optical sensors, as the idea of mounting the mouse had
vet to be addressed. Ultimately, the mouse was mounted by clamping and was
capable of sliding along the chassis to the desired position and then fastened.
The thickness of chassis was not considered important in this prototype.

8.5.3 Final Design

Two mechanical engineering students used a mill machine in the Mechanical
Engineering Machine Shop to machine the final design. This was the best lo-
cation because of the superior tools and resources available, and because the
student machinists possessed a tremendous amount of more experience in using
machine tools. The design is very similar to the second prototype. We included
additional material and holes to accommodate the mounting of the mouse and
optical sensors in the optimal position that was experimentally determined. The
desired thickness was used in the final design. Altogether, the final model offers
a compact design for the robot.

Figure 16: 3D Model of Robot

19

Figure 17: The two robots

8.6 Wirelss/Serial Communication

The entire wireless communication is based on a send / receive model that was
implemented in the GenericComm interface that is provided by TinyOS. The
only actions that the wireless uses is the broadcasts of serial data, the ’go’
command from GUI and is received by the motes and then they respond to
saying they got the message. The second message is based on the data that
each mote is collecting, which is sent back to the GUI for processing of the
data. Every time the basestation received the data, it would send it via the
serial interface (UART) back to the laptop and where it would be processed to
the screen.

9 Analysis

After completing construction of the robots we had to test each individual sub-
system to make sure that it worked and then integrate all the subsystems to
determine whether they worked together properly. The mouse was the only sen-
sor that didn’t give us that much trouble. The only difficulty with the two mice
is that after being cut down to size and mounted they were cut and mounted
slightly differently which in turn made the two robots drive slightly askew. This
was easily corrected by adding an offset in the code. After doing some research

20

the code was implemented very quickly. The tiltbar was very difficult to con-
struct and even after being constructed we broke it several times. The first
two times we broke the potentiometer and the third time we broke the circuit
board which the potentiometer attached to. The optical sensors we bought were
easy to use but inserting the portion of code that they contributed turned out
to be a much more difficult task than originally anticipated. Overall hardware
construction took a couple of more weeks than we would liked. Also, the radio
communication set us back two more weeks than we originally anticipated.

9.1 Limitations of TinyOS

TinyOS has some limitations with concurrent radio and serial 1/O. In NesC
their is a concept called fan-out. This is where there are multiple functions that
have the same name, and are called at the same time, StdControl.start() is an
example of one of these functions. A special function called a combiner is needed
to combine the outputs of all the function calls together. Without the combiner
the results of all but one of the functions are lost. The same issue exists when
mixing radio and serial packets if the packet type is the same. NesC generates
two functions with the same name and a combiner has to be provided by the
user. If the combiner is not there then only one of the calls succeed. This is not
a problem if a program only calls either the radio function or the serial function
but not both in a calling function. To work around this different packet types
were defined for radio and serial packets. Another issue that was found is that
TinyOS can only support two concurrent I/O calls. This was found later in the
development process and the only current work around is not to call more than
two I/O functions at a time.

10 Conclusion

This project has given us valuable engineering experience. While the goals en-
couraged us to extend and utilize our collective knowledge of electrical engineer-
ing, it also challenged us to coordinate our goals and aspirations as a group. The
stated design problem was to create a system whereby two autonomous robots
could move a box within a specified bound from one end of a lane to the other.
The real design problem was to learn to work together to realize this goal.

21

11 Appendix A: Budget

Part Ordered Cost Quantity Total Cost
Phototransistor 0.50 1 0.50
Switching Regulator 2.25 1 2.25
Perf board(A) 1.00 1 1.00
Switch 0.50 2 1.00
Linear Regulator 0.75 3 2.25
BJT NPN 0.10 2 0.20
Perf board(B) 1.50 2 3.00
Female-Female wire kit | 2.00 2 4.00
Female crimp pin 0.15 25 3.75
Batteries(9V) 6.25 4 25.00
Battery Case 1.25 1 1.25
Optical Sensors 4.39 5 21.95

Total Cost 66.15

Table 1: Budget

22

12 Appendix B: Power Budget
Item Voltage | Current | Capacity mAh | Power Est Time D
4xAA NiMH -4.8V 1800mA 1800 -8.64W 1 hour Moto
2xFA-130 4.8V 2x900mA N/A 8.64W M
9V NiMH -9V 216mA 250 -1.95W | lhour 9min Sensor
LM317 9V 216mA N/A 864mW Linear
2xQRB1134 5V 2x40mA N/A 400mW Optice
Mouse 5V 100mA N/A 500mW
H-Bridge 5V 36mA N/A 180mW
2xAA Alkaline -3V 24mA 2000 -72mW 3.5days Mica!
Micaz 3V 21mA N/A 63mW Estimated
Tiltbar 3V 3mA N/A 9mW Assumes
Table 2: Power Budget for Robot
Micaz Duty | Operation | Current
Processor
50% full load 8mA
50% sleep 8u A
Radio
60% Tx 12mA
30% Rx 8mA
10% Sleep 2uA
Logger
100% sleep 2uA
Sensor
100% | full load 5mA

Table 3: Power Budget for Micaz

23

13 Appendix C: Robot Pictures

Figure 19: Front View

24

Figure 20: Back View

25

14 Appendix D: Design Pictures

= <
% i
- \ : jg T
,o; TN S

2560
ErEt m\
y J@/wm »
o3~_|
00— oo— o~ | S—

— |
xxuw»c-m/ 019 038 000 013 0.5

Figure 21: Tilt Bar

Figure 22: Chassis

26

References

[1] http://instructl.cit.cornell.edu/courses/eed476 /FinalProjects/s2004/jcc72/code.html.
[2] http://www.computer engineering.org/ps2mouse.

[3] http://www.computer engineering.org/ps2protocol.

[4] http://www.embedded.com/2000/0010/0010feat3.htm.

[5] Dr. H. Van Dyke Parunak, LCDR Michael Purcell, and Robert O’Connell,
Digital Pheromones for Autonomous Coordination of Swarming UAV’s,
American Instiute of Aeronautics and Astronautics 3446 (2002).

27

