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Abstract

This paper describes our design used to create two autonomous robots that would 
be able to push a cardboard box down a lane and end within the lane's boundaries.  The 
robots communicate with each other and a base station.  The system works 
autonomously, except for a start and stop command.  We implement a tread system for 
our drive method to allow for more precise turning.  There are painted encodings on the 
treads used for speed and distance measurement that could be calibrated to the desired 
precision.  Another unique trait of our design is the GUI, which is implemented in a 
mIRC program.

Our project is related to the following fields of study: robot control, autonomous 
robotics, radio communication, and drive control.
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II. Introduction

The presented design will accomplish the task of having two autonomous robots 
push a cardboard box down a lane and end within the boundaries.  The box is allowed to 
leave the lane while in transit so long as the robots bring the box back within the lane 
before the end of the run.

There are several restrictions associated with this task.  The robots should be able 
to communicate with each other and send data to a base station.  The Graphical User 
Interface (GUI) connected to the base station will display all the packets in a readable 
form.

The robots are required to fit within a six-inch cube and can have no more than 
three-inches of contact with the box.  The box is between one and one-and-one-half 
meters.  The lane is two to two-and-a-half meters in width and roughly four meters long. 
We are provided three Micazs, one for each robot and one to be used as a base station.  In 
addition to the Micazs we are provided: two H-bridges, two gear boxes, and four wheels. 
All other items are to be purchased.

The design is divided into 3 main levels.  The top level consists of the algorithms 
used to determine what actions the robots should take to complete the task.  The 
algorithms consist of a Startup program, a Coordinator program, a Found Line program, 
and an End program.  The next level consists of the support modules responsible for 
communicating the algorithms' commands to the hardware.  These support modules 
consist of: Pulse Width Modulation (PWM) control, data passing, communications, 
sensor monitoring, and lower level motor control.  The bottom level is the hardware 
itself.

III. Algorithms

To accomplish our task we will be implementing a control algorithm as a state 
machine.  The states represent the set of actions that will be performed.  A state machine 
model was decided upon because of the well-separated modes of operation and the ease 
of switching between them.  These states consist of: Startup, Coordinator, Found Line, 
and End.  These states will then call upon a set of support modules to perform the 
individual actions.  The switching between states will be handled by the states themselves 
as input demands or the states finish.  The transitions between states will be determined 
by the sensor inputs, and the completion of the initial state.



Figure 1: Startup flow chart

The Startup state, shown in Figure 1, initializes the robots when they receive the 
start signal from the base station.  Due to this, Startup will only need to be run once. 
Other parts of the program require knowing which side of the box the two robots are on. 
The Startup program automatically does this by setting the primary robot to go to the 
right side and the secondary robot to the left side.   It is responsible for making sure that 
the robots will be placed in the optimum position, at the ends of the box, to complete the 
task.  The first action of the Startup state has the robots drive forward until they both 
touch the box, then align themselves so that both pressure switches are depressed.  At this 
point, the robot that is defined to be the secondary will then back up to allow the primary 
robot to pass by.  The primary robot will then rotate to the right until it is parallel to the 
box.  The robot will proceed along the side of the box until it detects the edge with the 
box sensor.  The primary robot will then signal the secondary robot to align in a similar 
manner as above but to the other end of the box.  When both of the robots are located at 
the edge of the box they will back up and rotate so they are perpendicularly aligned at the 
edge of the box.  Once the robots are aligned, the program will transition into the 
Coordinator state.  

During the last stage of the Startup program the timer subsystem for the 
Coordinator is initialized.  The timer for the initialization is turned off.  This way we can 
minimize the processing done by the Micaz.  The Coordinator program’s job is to drive 
the robots straight down the lane.  To do this, the robot runs through a series of 
comparisons between its bumper states and those of the other robot.  There are 7 basic 
states that the Coordinator program runs checks for.  The following table shows these 
states.  The highlighted numbers are the bumpers on the robot performing the 
instructions.  A “1” represents a depressed bumper switch and a “0” represents a free 
bumper.



Command States involved

Drive Forward 0000,   1111,   1100,   0100,   1000

Stop 0011

Turn Right 0001,   1101,   1001

Turn Left 0010,   1110,   0110

Forward Slow 0111,   1011

Special (right) 0101

Special (left) 1010

Figure 2: State diagram of Coordinator

The first case, “Drive Forward”, occurs when neither bumper on the robot is 
depressed or in the ideal case where both bumpers of  the robots are  depressed.  The 
“Stop” case will occur when one robot is aligned with the box and the other is not 
touching it.  The “Turn Right” and “Turn Left” states occur when one bumper on the 
robot is not depressed and the other is, and the other robot is not in the same bumper 
configuration.  In this case the robot will turn until both of the robot's bumpers are 
depressed.  The “Forward Slow” case occurs when one robot is fully connected with the 
box and the other robot is in the “Turn Right” or “Turn Left” state.  This state is used 
because a turning robot is significantly slower than a robot driving straight.  This state is 
simply the drive forward state with a speed modulator built in to slow the robot down. 
Finally the special cases are to help cope with angle correction.

In each of the special cases, the robots try and balance the box so that it stays 
perpendicular to the lane.  By the time the robots reach the special case they will know 
which side of the box they are on.  This is due to the Startup algorithm.  The special cases 
should only activate if the box has gotten askew but the robots are still facing straight 
down the lane.  In this case, the robot that is further forward will slow down to allow the 
lagging robot to catch up.  As soon as the robots have both bumper sensors depressed 
they resume the move state and continue down the lane.

Periodically during this time the robots are polling the line sensors to see if they 
cross a line.  When this occurs the Coordinator program places itself in a waiting status 
and tells the Found Line program to run.



The Found Line program follows a simple algorithm.  A short synopsis of the 
algorithm is displayed in Figure 3.

Figure 3: Found Line Algorithm

The primary robot will drive forward around a semicircle, stopping once the line 
is passed for the second time.  The secondary robot will then move to position the box 
such that it is perpendicular to the lane and both bots can continue with the Coordinator 
program.

Initially, the primary robot, which is the robot that detected the line, sends a 
message to the other robot, which causes that robot to enter the Found Line program as 
well.  The primary robot then proceeds to drive in a circle.  To do this, the inner tread is 
set to PWM at a slightly slower speed than the outer tread.  During this process, the robot 
can end the Found Line state in three situations.  The first is where, immediately after 
starting, the robot's opposite line sensor detects the end of the lane.  The second exit to 
the Found Line state is the false line alarm.  This occurs after the robot has driven a 
significant distance around its circle and the opposite line sensor has not detected a line. 
This state protects against short small crossovers.  The third and final exit is caused when 
the robot senses the line with the opposite sensor and proceeds around the circle until it 
encounters the line again.  During each of the three states, the robot records the distance 
traveled so that it may inform the other robot.  After any one of the three exit conditions 
are met the primary robot sends a corresponding signal and waits until the other robot 
says that it has finished with the Found Line program.



Figure 4: Found Line of the Primary Robot

The Found Line program for the secondary robot is significantly less complex. 
After receiving the found line signal and being kicked into the Found Line program, the 
secondary robot stops and waits for further input as shown in Figure 5.  Once the primary 
robot sends its signal, the secondary robot proceeds based on that signal.  In the case of 
the end-of-the-lane signal, the secondary robot catches up so that the box is at the edge of 
the lane then sends the proceed signal.  In the second case, where the false line alarm 
signal is sent, the secondary robot drives a preset distance forward around the same circle 
as the other robot.  In the third case, the secondary robot uses the same program as the 
second case, but travels half of the distance that the primary robot  traveled.  In all three 
cases the secondary robot sends a continue signal which lets both robots either enter the 
end state or continue forward with the Coordinator.

 

Figure 5: Found Line of the Secondary Robot

The end state can be reached by one of two methods: the end signal being 
received from the GUI, or the Found Line state determining that the line encountered was 
the end of-the-lane line.  In this state the robot should turn off the motors and timers and 
wait till the robot is turned off or reset.



IV. Support Modules

The support modules of each robot are the basic foundations upon which all of the 
high level control is built.  There are 5 basic support modules that are used: 
communications, identification, PWM_motor control, and sensors.  The communications 
support module is sent data from anywhere in the robot.  It takes the data and packages it 
so that it may be sent across the RF port of the robot.  The communications module also 
receives all messages and un-packages them into their data components.  It then passes 
the received data to the algorithm that was intended to use it.  The identification module 
tells the other components whether this robot is the primary or secondary robot.  This is 
used primarily in the communications system and the Startup program as an identifier. 
 

One of the most important support modules is the PWM_motor control.  It is 
responsible for managing the PWM controlling the motors speed and direction.  The 
module was set up so that each side of the robot can be run at separate speed. 
Instructions to both motors can also be given in the form of the following: go forward, 
stop, reverse, turn right, turn left, and pivot.  These allow for easy programming of 
movement in the upper level algorithms.  The final support system is the sensor system. 
During startup, the sensor system passes the memory address of the sensor values to all 
other components.  The sensor support system periodically checks and updates the 
memory containing sensor data.  This way, the other programs can look up the current 
state of the sensors without wasting time checking the actual pin that the sensor is 
connected to.

The implementation of the algorithms and the supporting modules was in the 
nesC language for the TinyOS operating system that runs on the Micaz.  This language is 
a C derivative for network embedded systems with TinyOS driving much of its' design. 
It is a component-based language that provides a unique method of linking components 
together.  The system is an event driven system.

The graphical user interface, seen in Figure 6, used for our project runs on a 
computer attached to the Micaz interface board through a USB connection.  The attached 
Micaz acts as the base station.  The GUI is written in the mIRC scripting language with 
the help of Dialog Studio, a design kit that generated the code when the various items 
were placed on a workspace.  Once the main GUI layout was completed the code was 
copied into the mIRC scripting editor where the remaining code was implemented.  This 
code included all the functionality for the GUI as well as how to update the display when 
certain packets were sent by either of the two robots out in the field.  The GUI also 
included code for sending the start and stop signals to our robots.



Figure 6: GUI

The mIRC scripting language is a language that was developed by the designer of 
mIRC itself, and is only usable in that application.  Although mIRC scripting is primarily 
used for interfacing with both mIRC and IRC, it can be used to create GUIs so long as it 
is running inside the mIRC application.  The mIRC scripting language is used for the 
GUI for three main reasons: the ease of making a GUI using the development kit, allows 
for rapid code implementation, and built in socket communication.

The GUI displays all required commands from the two robots in the field.  The 
display of these commands includes both an image and a textual representation in a 
bilateral display system, with one side for each robot's status.  Also included in the 
display is the speed of the robots.  There are two buttons, "Start" and "Stop", that a user 
can click to send out the respective signals.

In order to interface with the Micaz from mIRC, an intermediary program had to 
be written that could convert serial packets into TCP/IP packets and vice-versa.  This 
program was designed and implemented in the python scripting language.  This script 
continually reads from both the socket used by mIRC and the serial port used by the base 
station.  Packets received over the serial port are filtered by group number and discarded 
if they did not match ours.  The data part of the packet was stripped out and sent across a 
socket to mIRC where the data was analyzed by the GUI code and displayed in the 
correct places.  When the "Start" or "Stop" buttons are clicked, a short data packet is sent 



to the socket where the python script would then append all the other data to make it a 
complete packet for the Micaz.  The packet is then sent over the serial port to the Micaz.

The robot's code is implemented on a Crossbow Micaz, which is an 8-bit high 
performance, low power microcontroller.  The Micaz is approximately 1.5inches by 
2.5inches in size.  It contains the microcontroller interface, a wireless antenna, and a 
battery case that holds two AA batteries.  The Micaz, although unable to communicate 
directly with the computer, comes with an interface board for programming and basic 
communication.  There are 128KB of in-system re-programmable flash memory for 
program storage.  The Micaz runs at 8MHz allowing for rapid execution of code 
segments.  The six PWM channels are used to manage the drive control subsystem of our 
code, allowing for different rates of speed for either side of our robot.  The Micaz is able 
to operate in a voltage range between 2.7 to 5.5 volts.  The AA batteries used kept it at 
3V.  The Micaz's wireless radio has a 2.4GHz frequency and is able to transfer and 
receive 256kbps.

V. Hardware

The hardware is designed to contain the Micaz and all other components used. 
We constructed two robots, each consisting of two levels.  There is also room for a third 
level, which could be easily added if more space is required.  The chassis are made from 
aluminum plates.  The reason we chose aluminum is that it is sturdy and fairly easy to 
machine into whatever shape we needed.  Also, we were able to obtain free aluminum 
from the scrap pile in the machine shop, which cut down on our costs.  We cut three 
separate plates per robot.  Two were square pieces of aluminum, one of which was used 
for the second levels, and the other for the third levels if needed.  The other plate was cut 
into a rectangular shape, to allow room to mount the wheels.  Since the robot has to fit 
inside a 6”x6”x6” box, we had to make sure that the bottom level with wheels attached 
would not exceed a width of 6 inches.  To hold the levels together, we used two long 
bolts that we obtained from a box containing parts from old design projects.  We drilled 
through the separate levels, and then attached them to each bolt by placing a nut both 
above and below the plate.  This scheme held the plates firmly in place while allowing us 
to change the spacing, providing room to mount components onto the separate levels.

The underside of the bottom level holds the wheels, gearbox, and axle mount and 
sensor bar.  Mounting these components on the bottom gave us room on the top for other 
components, while maintaining sufficient clearance above the ground.  The sensor bar 
was mounted so that the sensors could be adjusted to be the correct distance above the 
ground.  The backset of wheels was mounted in the gearbox.  The second set of wheels 
was mounted on the front of the robot using a custom axle mount.  The axle mount 
consisted of  three machined aluminum blocks.  The blocks were mounted to the platform 
using screw taps.  The axles were held in place with holes drilled through the center of 
each block.  Originally, we started by using one block and two L-shaped pieces of 
aluminum to mount the wheels, but we found that these were not at all sturdy enough, 
thus three blocks were used.  The wheel axles would then be threaded through one side 
block and partially into a middle block.  Two lock collars with setscrews were used to 



hold the axles in place.  The sensor bar itself was a long piece of L-shaped aluminum. 
Three sensors were mounted on each side of the bar, one facing outwards, two facing 
down.  These are the box, line, and speed sensors.  The sensors are mounted with screws, 
which, due to the long hole in the in the middle of the sensors, makes them adjustable.

The top side of the bottom level holds the front bumper and the H-bridge.  The 
front bumper consists of two snap switches, an aluminum bar, and two pieces of eraser. 
The snap switches have a bar, which is hook shaped at the end.  They are mounted to the 
bottom level.  The aluminum bar is mounted to the switches by a small length of copper 
wire.  The wire is threaded through the bar and around the hook part of the switch.  This 
holds the bar onto the switch while also allowing for the change in distances created by 
the pressing of the switches.  We found that the bar itself was not thick enough, since it 
rested slightly behind the edge of the wheels.  Because of this, we decided to attach two 
pieces of eraser to the bar, which ensured that it would hit the box before the wheels did. 
The H-bridge is also mounted on the top of the bottom level.  It is attached via four 
screws that are threaded up through the bottom level, and stick out above it.  The H-
bridge itself rests on four short plastic cylinders, and is held down by four nuts.

The second level has nothing mounted on the underside.  The upper side holds the 
MicaZ itself, a breadboard used for circuitry, and the batteries.  The MicaZ is mounted in 
a thin tin seating that is bent into a form that would securely hold it in place.  There is no 
topside, thus allowing easy removal and replacement of the MicaZs, and the sides are 
slightly lower thus allowing easy access to the on/off switch.  The seating is then attached 
to the aluminum by double-stick tape, which holds it in place quite well.  In order to wire 
up the circuits required for the sensors and the power regulators, we took a normal 
breadboard and cut it into fourths so that one of the fourths would be small enough to fit 
onto the robot.  The batteries themselves are simply mounted to the plate using double 
stick tape.

Our testing has so far shown that our design is sturdy enough to work for our 
purposes.  While several elements could be slightly better, such as using printed circuits 
boards instead of a breadboard, the changes are not necessary to get our robot to perform 
correctly.

One of the most unique aspects of our approach is our drive system.  Out of the 
many different steering options we considered, we decided to use a skid-steer driving 
method.  In a skid-steer system, the wheels on each side of the unit are tied together in 
such a way so that all wheels turn at the same rate and in the same direction.  This allows 
each side of the vehicle to be considered a single drive unit, reducing the overall drive 
systems complexity.  A skid-steer system also has the advantage of a centralized point of 
rotation, which allows our robot to turn inside its own radius.  This system can also easily 
take advantage of a steering method called counter-rotation.  In this method, the robot can 
make sharp turns by having the wheels on the turning side run in reverse, and the wheels 
on the opposite side run forwards.  This causes the system to turn in place around its 
center of rotation.  The robot can make varying degrees of turns by changing the relative 
speed of the wheels on each side.  Having both sides rotate in the same direction but at 



different rates allows the vehicle to make shallow adjustment turns while in motion. 
Straight-line motion can be achieved and easily maintained, by having both sides run at 
the same speed. 

 
These advantages make skid-steering an effective choice for our design.  Being 

able to rotate within the wheelbase of the robot allows the robots to rotate in place when 
finding the edge of the box without having to worry about accidentally hitting it.  By only 
needing to monitor the speed of each side, we have a large degree of control and accuracy 
in our movements with relatively few sensors.  The only difficulty with skid steering is its 
slightly higher complexity to implement.

There are two primary methods to create a skid-steer system.  The main method to 
implement skid-steering in industrial machinery is to use a common transmission for each 
side.  This is a very effective method of ensuring equal power distribution.  However, 
such transmissions are very complex and are beyond our ability to create using our 
existing transmission.  The second method that can be used is to have only one set of 
wheels on each side powered and have the remaining wheels on each side coupled to the 
drive wheel using a track.  This method can be inefficient due to track slippage, but is 
much easier to implement, only requiring a free rotating axle for the other wheels and a 
track to link them together.  This has the added bonus of allowing speed measurements to 
be taken by encoding the tracks, which simplifies the sensor system and ensures that we 
are measuring the actual ground speed of the robots. 

After several different designs for tracks, we determined that a three-stage track 
system would work best for our needs.  The first stage consists of a rubber o-ring on the 
outside rim of each of our wheels.  The purpose of this o-ring is to add extra traction to 
compensate for removing the tires to implement the tracks.  These are unmodified, and 
were sized to fit the rims.  The second stage consists of a rubber o-ring that runs between 
the inner rims of the wheels on each side.  This o-ring provides most of the coupling 
forces between the two sides, and also a large portion of the traction.  Like the outer o-
ring, this o-ring is unmodified and was sized to match the track length of the system.  The 
final stage of the track is the main track.  While designated the main track, this portion 
actually provides only a small portion of the traction and coupling in the system.  Its main 
function is to provide encoding for the speed sensors.  This stage is made from a remote 
controlled car track, which has been cut to correct width and length.  Despite careful 
measurements when re-cutting, the tracks stretched slightly, which allowed it to slip 
under power, greatly reducing its coupling ability.  By adding the inner o-ring mentioned 
above much of the strain was taken off, allowing the track to rotate smoothly and without 
slipping.  In addition to being cut to size, these tracks have had graduations painted on the 
inner surface to serve as optical encodings for the speed sensors.  While we originally 
planned on using a mask to paint the treads, establishing such a mask proved to be too 
time consuming and it still allowed paint to leak through.  However, the material we used 
for the track had a uniform ribbing on the inside, giving us a reference to hand paint the 
marking using model paint and a fine brush.  Overall the hand painting was very 



effective, with the difference between the largest and smallest markings being less than 
2mm. 

After developing a plan for our algorithm we determined that we would need the 
following sensor inputs: speed measurement for each side, line detection for figuring out 
if we cross the line on either side, object detection for finding the edge of the box, and 
pressure detection for finding which sides are in contact with the box.  We originally 
planned on using a sensor to determine the robots position with respect to each other, but 
we were unable to find a sensor with adequate range and sensitivity to do what we 
intended, so our algorithm was modified to perform the task without the sensor.  After 
deciding what each sensor needed to do, we needed to decide which type of sensor would 
best perform each task.  For the speed measurement, line detection, and edge of box 
detection, we decided to use optical encoders.  For detecting box contact we decided to 
use pressure sensors. 

Optical encoders are a meet our requirements for many reasons.  First, since they 
detect light and dark regions they can easily distinguish the black tape used for marking 
the lane, the black and white graduations on the tracks, and the edge of the box.  Second, 
the sensors work without having to be in contact with an object, which reduces friction 
losses in the case of the line or speed sensors, damage to the track or sensor in the case of 
the speed sensors, and inadvertent moving of the box in the case of the edge detectors. 
Since the speed measurement was most critical to our design we looked at sensors that 
would meet those requirements first.  The sensor we ended up using, the QRB1134, can 
be used for all three applications.  This simplified our design, since we only have to refer 
to one data sheet to configure the sensors, and we were able to easily install the 
remaining sensors once one initial sensor was setup.  The QRB1134 consists of an 
infrared emitting diode paired with a phototransistor sensitive to the same wavelength. 
When connected as shown in diagram 1, the sensor will output logic high when there is a 
reflective object and a logic low when there is no object or a non-reflective object.  By 
changing the external resistor values, the optimum range can vary between .2 inches and 
6 inches.  The sensors are mounted on sliding mounts so that they can be moved to the 
optimum height and rotated to the optimum angle for best resolution.  We use a total of 6 
QRB1134’s on each robot, one on each side for each sensor system. 

For the box contact sensor we decided to use a physical touch sensor instead of an 
optical sensor because we want to be sure that the robots are actually touching the box 
and not just close enough to trigger the sensor.  The type of sensor we are using is a 
double pole, single throw snap switch.  It is wired so that, when the robot is not in contact 
with the box, the switch is connected to the ground terminal and logic low is reported. 
When the robot is in contact with the box, the switch depresses and the throw is now 
connected to the VCC terminal and logic high is reported.  The arms for the switches are 
connected to a bumper to distribute the weight of the box when pushing.  They are 
connected on the outside edge of the bumper to give better sensitivity if the box is angled. 
The original switch we were going to use had a longer contact arm than the one we 
finally used, however that particular model was out of stock.  To compensate for the 



decreased length of the arm and give better surface contact with the box, we added rubber 
standoffs to the edges of the bumper. 

To connect the various components together a breadboard is cut to size with 
several ground and power buses.  While not as stable as a printed circuit board (PCB), a 
breadboard allowed changes to the design to be implemented as needed to compensate 
for unforeseen difficulties.  Several times in our initial design we had to radically modify 
the sensor and board layout.  If we had had to re-etch a new circuit board, it would have 
been time and cost prohibitive.  Even in final testing, we had to modify our power supply 
design because our initial design made some incorrect assumptions and we were not 
getting enough power to drive the motors.  Since we used a breadboard, we easily 
remedied the problem in a few minutes.  Had we used a PCB it would have taken several 
hours to make the same changes.  Once we had a final working prototype design, we 
could have rebuilt onto a PCB if time had allowed.  This would have given us a much 
cleaner and less cluttered design, and we could have used leads that were cut to length. 
We compensated for this lack by carefully color-coding and labeling all of our wiring. 

VI. Power

Our final power supply design consists of three parts.  The first part is the Micaz’s 
self-contained battery pack consisting of 2 1.5V AA batteries.  The second part consists 
of a 5V DC power regulator supplied by a 9V battery.  The power regulator allows us to 
generate a constant 5V even when the battery begins to lose charge and its voltage begins 
to drop.  This supply powers the various sensor systems.  Originally this was also 
supposed to supply the power for the H-bridge and motor, but we discovered in final 
testing that the current drawn by the sensors took too much power from the motors and 
left the motors unable to move the fully loaded chassis.  To fix this we added the third 
part of our power system, a second 5V regulator powered by two 9V batteries in parallel. 
This resulting configuration has enough current to drive the motors and H-bridge 
effectively.  

Our power budget was measured and calculated directly from one of our robots. 
The power consumption of the infrared sensors and pressure sensors were a total of 1W, 
while the regulator used for these sensors was far over this amount at 1.4W.  Our motors 
on the other hand only consumed half a watt on their own, with an additional .4W from 
the voltage regulator on the system.  These totals, combined with the power consumed by 
the h-bridge and Micaz, came to just over a total of three watts.  Using the rated time on 
our 9V volt batteries we calculated the run time of our robots to be about two hours using 
three such batteries, assuming they maintained a stable charge.  Our power budget, had it 
been calculated like this previously, would have shown us that we needed the three 9V 
batteries per robot instead of the two we had originally planned for.



$18.95 4 0 0

Batteries $23.00 8 6 $17.25

Pair of wheels $11.70 2 4 $23.40
Eraser $1.17 2 2 $1.17

$1.80 6 6 $1.80

Treads -- -- 4 --
O-Rings Small -- -- 8 --

O-Rings Large -- -- 4 --

Aluminum -- --
Total $117.51 $80.46

Rechargeable 
Batteries

Battery 
Connectors

VII. Budget

Figure 7: Budget

The budget shown above is for how much our group has spent (Cost column) and 
how much it would cost to build the robots we used (System Cost column).  As seen in 
the above chart we managed to stay within the $150 budget allocated by the Electrical 
Engineering Department.  Most items were purchased with extra quantity in case of 
damages caused through out the semester.  The following items are donations and do not 
have listed costs: Treads, O-Rings, and Aluminum.  The parts provided by the class that 
we did not purchase extra are not listed here.

VIII. Conclusion

With the above design, we believe we can successfully accomplish the task given 
to us.  Here are some of the benefits of our design.  By using a tracked skid system we 
have better turning ability and a shorter turning radius.  Our Startup procedure allows us 
to compensate for not knowing the initial positions of the robots.  By using a sensor bar 
with adjustable mount we can fine-tune the sensors for optimum performance.  Finally by 
using a multilevel design we can easily add additional modules and further refine the 
design.


