
EE 308 EE Dept., New Mexico Tech Spring 2010

Lab 3 - Part 1

C Language Programming, Interrupts and Timer Hardware

In this sequence of three labs, you will learn how to write simple C language programs for the MC9S12
microcontroller, and how to use interrupts and timers.

Introduction and Objectives

The C programming language is used extensively in programming microprocessors. In this lab you will write
some simple C programs which do the things you did in assembly language in Lab2. For example, Program 1
displays a counting pattern on the LEDs connected to Port B

1 Prelab

For the prelab write the program for Part 4 of this lab.

2 The Lab

1. Start a new project.

(a) This time, in Project Parameters, select C.

(b) On the C/C++ Options menu, select ANSI startup code, Small memory model and
None for the floating point format.

(c) Select Edit - Standard Settings, Select Target - Compiler for HC12, then click on Options.
Click on the Output tab, and select the Generate Listing File. The listing file will be called
main.lst in the bin subdirectory of the CodeWarrior project. The listing file includes the C
statements as well as the assembly language which was generated.

CodeWarrior uses a linker file called Project.prm that tells the compiler where to put the program
and data. In the window which lists the project files, select Project Settings - Linker Files -
Project.prm

Find the following lines

RAM = READ WRITE 0x1000 TO 0x3FFF ;

1

EE 308 EE Dept., New Mexico Tech Spring 2010

and change it to

RAM = READ WRITE 0x1000 TO 0x1FFF ;
PROG = READ ONLY 0x2000 TO 0x3FFF ;

Next, find the line

INTO ROM C000/∗ , ROM 4000 ∗/ ;

and change it to

INTO PROG/∗ , ROM 4000 ∗/ ;

Save and close Project.prm

2. Type in Program 1 and click Project - Make.

3. Look at the file main.lst and try to understand what it does. Note that there may be some things
which do not make sense to you. At the very least, find the assembly language code which increments
Port B.

CodeWarrior generates a file Project.map in the bin subdirectory. The file Project.map shows the
addresses of the C functions and of any global variables. The Project.map file also shows entry point
to the program and the sizes of the functions (in both hex and decimal) in the OBJECT-ALLOCATION

SECTION.

Load the file Project.abs.s19 into your MC9S12 and run it. Verify that the LEDs increments. Where
is the entry point to the program in memory.

4. Using Program 1 as a model, write a C program to implement the program from Lab 2-Part 3.

Compile and run your program. Have an instructor verify that it works.

5. Look at the Project.map and determine how many bytes the program takes (the length of the .text
segment). Compare this to the length of last weeks program written in assembly.

6. Put your program in the EEPROM at address 0x0400. Remember, when you put code into EEPROM
you need to do some setup which DBug12 normally does for you. You need to convert the assembly-
language code (which multiplies the clock by 6) from Lab2 into C code, and add it as the first lines of
you program. There is no C statement to implement the assembly-language instruction sei. You can
use the asm function to insert this (or any other assembly language instruction) into you program:

asm (s e i) ;

You will want the array which stores the turn signal patterns into the EEPROM (so the array will
not disappear when you turn off power). You will want variables which will change as the program
is executed to be placed in RAM. You can tell the compiler to put constant data (such as an array
of patterns to be display on LEDs) immediately following the code (so the data will be loaded into
EEPROM) by defining the data as type const. An example of setting up an array of type const is:

const char t ab l e [] = {0xaa , 0 xbb , 0 xcc } ;

Now you need to tell the compiler to put the program into EEPROM. You can do that by using the
Project.prm file as follows:

Find the following lines

INTO PROG/∗ , ROM 4000 ∗/ ;

2

EE 308 EE Dept., New Mexico Tech Spring 2010

and change it to

INTO EEPROM;

Finally, change the address pointed to by EEPROM to 0x410. Save and close Project.prm. When
you upload the program and try to start it from EEPROM, it will try to start from address 0x0400.
To fix that add a BRA 0x0439. This is the address that your program starts at.

Program 1 A C program to increment LEDs connected to Port B.

1 #inc lude <h id e f . h> /∗ common d e f i n e s and macros ∗/
2 #inc lude ” d e r i v a t i v e . h” /∗ de r i va t i v e−s p e c i f i c d e f i n i t i o n s ∗/
3
4 #de f i n e D 1MS (24000/12) // Inner loop takes 12 c y c l e s
5 // Need 24 ,000 c y c l e s f o r 1 ms
6
7 void de lay (unsigned shor t num) ;
8 main ()
9 {

10 DDRB = 0 x f f ; /∗ Make PORTB output ∗/
11 PORTB = 0 ; /∗ Star t with a l l o f f ∗/
12 whi le (1)
13 {
14 PORTB = PORTB + 1 ;
15 de lay (50) ;
16 }
17 }
18
19 void de lay (unsigned shor t num)
20 {
21 v o l a t i l e unsigned shor t i ; /∗ v o l a t i l e so compi le r does not opt imize ∗/
22
23 whi le (num > 0)
24 {
25 i = D 1MS ;
26 whi l e (i > 0)
27 {
28 i = i − 1 ;
29 }
30 num = num − 1 ;
31 }
32 }

3

	Prelab
	The Lab

