
EE 308 EE Dept., New Mexico Tech Spring 2010

Lab 5 - Part 1

Final Project: Interfacing and Motor Control

Port Expansion for the MC9s12

In this sequence of labs you will learn how to interface with additional hardware and implement a motor
speed control system. At the end of this sequence you will have to write a report that will be handed
seperately.

Introduction and Objectives

It is sometimes necessary to add additional memory and/or hardware to a microprocessor or microcontroller.
While interfaces such as the SPI allow you to add some hardware, it is often necessary to interface directly
to the address/data bus. For a microprocessor, which does not have built-in peripherals, the address/data
bus is the only way to add additional memory or hardware. In this lab you will add an extra output port to
your MC9S12.

Figure 1 shows a block diagram for adding an external output port at address 0x4001 to the microcon-
troller. You will implement the port in your Altera FPGA board from EE 231. Note that you will have to
connect the 16-bit multiplexed address/data bus and three control lines from your MC9S12 to your Altera
board. You will have the eight bits of your output port at 0x4001 control the LEDs on your Altera board
to verify that the output port is working. Your Verilog program should also implement an eight-bit input
port at address 0x4000. Connect the four switches on the Altera board to the input port at 0x4000 so you
can see that the input port works.

1 Prelab

Write a Verilog program to implement an eight-bit output port at address 0x4001 and an eight-bit input
port at address 0x4000.

2 The Lab

1. Write an Verilog program to implement the expansion ports.

1

EE 308 EE Dept., New Mexico Tech Spring 2010

R/W = 0

LATCH

E

ADDR(16)

R/W

LSTRB

Port A

Port B

R/W = 1

CS_R

HCS12

OR

LSTRB = 0

ADDR = 0x4000

ADDR = 0x4001

WE

E = 1

AD 15−8

AD 7−0

PLD

ENA

The HC12 will read the data on the flip−flops on the high−to−low transition of the E−clock

Reading from address 0x4001 (ADDR = 0x4000 or 0x4001, LSTRB low, R/W high, E high) will bring CS_R low

On the high−to−low transition of E with WE low, the data into the flip−flops

Writing to address 0x4001 (ADDR = 0x4000 or 0x4001, LSTRB low, R/W low) will bring WE low.

This will drive the data from the flip−flops onto the data bus

8

F
F

Figure 1: Block diagram of HCS12 output port at address 0x4001

2

EE 308 EE Dept., New Mexico Tech Spring 2010

2. Assign the pins for the Altera chip so you can connect the sixteen address/data lines and three control
lines to your MC9S12. Also, assign the pins so that the output port controls the LEDs on the Altera
board, and the four least significant bits of the input port are connected to the switches of the Altera
board. Note that there will be a lot of wires to run, so it is essential that you are neat in your wiring.
Be sure to assign the E input to pin J-13 (CLK3 of the EE231 board) or K-13 (CLK2). These are
global clock inputs, which means the E clock will be routed directly to the clock input of the flip-flops
and latches without any delay of going through other logic.

3. Check the functioning of your port using D-Bug12. When you start your MC9S12 using D-Bug12, the
microcontroller is in single chip mode. In this mode you can manipulate AD-15-0, E, R/W and LSTRB

as general purpose I/O lines. You can use the MM command of D-Bug12 to write data to the output
port by changing AD15-0 (PORTA and PORTB), E, R/W and LSTRB in the same sequence that the MC9S12
would if it were in expanded wide mode.

(a) Use the DDRE register to make E, R/W and LSTRB output pins. (Note: E is bit 4 of PORTE, R/W is
bit 2 of PORTE, and LSTRB is bit 3 of PORTE.

(b) Bring E low by writing to PORTE.

(c) Put 0x4001 on PORTA and PORTB.

(d) Bring R/W and LSTRB low.

(e) Bring E high.

(f) Put the data you want to write to the port on PORTB.

(g) Bring E low.

4. The program below can be put into EEPROM so you can run your board in wide expanded mode. To
get into wide expanded mode, you will have to put this program into EEPROM starting at address
0x0400, and then set DIP Switch SW7 so you run your EEPROM program rather than DBug12. (You
cannot run in expanded wide mode using DBug12, since DBug12 uses the Flash EEPROM in the
region 0x4000-0x7fff.)

3

EE 308 EE Dept., New Mexico Tech Spring 2010

#inc lude <h id e f . h> /∗ common d e f i n e s and macros ∗/
#inc lude ” d e r i v a t i v e . h” /∗ de r i va t i v e−s p e c i f i c d e f i n i t i o n s ∗/
#inc lude <s t d i o . h>

#inc lude <termio . h>

#de f i n e IN PORT (∗ (v o l a t i l e char ∗) 0x4000)
#de f i n e OUT PORT (∗ (v o l a t i l e char ∗) 0x4001)

#de f i n e BIT7 0x80
#de f i n e BIT6 0x40
#de f i n e BIT5 0x20
#de f i n e BIT4 0x10
#de f i n e BIT3 0x08
#de f i n e BIT2 0x04
#de f i n e BIT1 0x02
#de f i n e BIT0 0x01

void INTERRUPT RTI is r (void) ;
v o l a t i l e i n t done ;

main () {
/∗ Set bus c l o ck to 24 MHz ∗/

asm (s e i) ;
CLKSEL &= ˜0x80 ;
PLLCTL |= 0x40 ;
SYNR = 0x05 ;
REFDV = 0x01 ;
whi l e ((CRGFLG & 0x08) == 0) ;
CLKSEL |= 0x80 ;

/∗ Put MC9S12 in to wide expanded mode ∗/
MODE = 0xe8 ; /∗ Expanded wide mode , IV on ∗/
PEAR = 0x0c ; /∗ Turn on R/W, LSTRB, E ∗/
EBICTL = 0x01 ; /∗ Use E−c l o ck to con t r o l e x t e rna l bus ∗/
MISC = 0x03 ; /∗ No E−c l o ck s t r e t ch , d i s ab l e ROM from 4000−7FFF ∗/

DDRP = DDRP | 0x0F ; /∗ Make 4 LSB o f Port P outputs ∗/
PTP = PTP | 0x0F ; /∗ Turn o f f seven−seg LEDs ∗/

/∗ Set up SCI f o r us ing DB12FNP−>p r i n t f () ∗/
SCI0BDH = 0x00 ; /∗ 9600 Baud ∗/
SCI0BDL = 0x9C ;
SCI0CR1 = 0x00 ;
SCI0CR2 = 0x0C ; /∗ Enable transmit , r e c e i v e ∗/

/∗ Set up RTI to increment 0x4001 , and d i sp l ay 0x4000 on the computer te rmina l ∗/
UserRTI = (unsigned shor t) &RTI i s r ;
RTICTL = 0x13 ; /∗ 131 ms ra t e ∗/
CRGINT |= BIT7 ; /∗ Enable RTI i n t e r r up t ∗/

asm (c l i) ;

p r i n t f (” he l l o , world\ r \n”) ;

f o r (; ;) {
whi le (! done) ;
p r i n t f (” sw i t che s = %x , LEDs = %x\ r \n” , IN PORT & 0x0f , OUT PORT & 0 x f f) ;
done = 0 ;

}
}

4

EE 308 EE Dept., New Mexico Tech Spring 2010

void INTERRUPT RTI is r (void)
{

OUT PORT = OUT PORT + 1 ;
done = 1 ;
CRGFLG = BIT7 ;

}

5. An MC9S12 with a functioning expansion port will be available at one of the logic analyzers during
lab this week. The HCS12 is running the following loop:

org $0480
loop : ldx $4000

inc $4001
ldaa $4000
bra loop

The label loop is at address 0x0480.

(a) Hand-assemble this program to determine the op codes and op code addresses.

(b) Use the logic analyzer to grab data from the HCS12 address/data bus. Identify the memory
cycle which reads data from address 0x4001, and the memory cycle which writes data to address
0x4001. The HCS12 address/data bus uses 19 lines – AD15-0 and the three control line E, R/W, and
LSTRB. The HCS12 will either be fetching instructions from EEPROM (address 0x0400-0x0fff),
or accessing the external port at 0x4001. Thus, adress bits D15, D13 and D12 will always be zero.
These three lines will not be connected to the logic analyzer. Figure A-9 of the MC9S12DP256B
Device Users Guide shows the external bus timing. As best you can, measure the following times.
The numbers in parentheses are the labeled numbers on Figure A-9 and Table A-20. Compare
the numbers to the values listed in Table A-20.

i. Cycle time (2)

ii. Pulse width, E low (3)

iii. Pulse width, E high (4)

iv. Address delay time (5)

v. Muxed address hold time (7)

vi. Write data hold time (13)

vii. Read/write delay time (24)

viii. Read/write hold time (26)

ix. Low strobe delay time (27)

x. Low strobe hold time (29)

5

	Prelab
	The Lab

