
Junior Design Team Odyssey
Final Design Report

Matthew Godman, Matthew Landavazo, Vinny Ravindran, Nicole Sims

Electrical Engineering Department,
New Mexico Institute of Mining and Technology

9 May, 2011

i

ii

Contents

1 Introduction 1

2 Hardware Design 1
2.1 Microcontroller . 2
2.2 H-Bridges/Motors/Battery . 2
2.3 GPS . 3
2.4 Compass . 3
2.5 Infrared Thermometer . 3
2.6 Photodiodes . 4
2.7 Ultrasonic Receiver . 5
2.8 Wheel Encoders . 6
2.9 Infrared Proximity Detection . 7
2.10 Powerboard . 7
2.11 Power Budget . 8
2.12 Chassis Construction . 8

3 Software Design 9
3.1 Interfacing and Integration . 9
3.2 The Real Time Interrupt . 9
3.3 Timer Input Capture Output Compare (TICOC) . 10
3.4 The Big Picture . 10

4 Budget 11

5 Conclusion 12

List of Figures

1 Obstacle Course Map . 1
2 Block Diagram of System Design . 1
3 Odysseus . 2
4 H-Bridge and Motor Connected to Battery . 2
5 GPS Connected to Microcontroller Breadboard . 3
6 Digital Compass Connected to Microcontroller Breadboard . 3
7 Mounted Infrared Thermometer . 4
8 Infrared Thermometer Circuit Diagram . 4
9 Infrared Thermometer on PCB . 4
10 TSL257 Photodiode Circuit Diagram . 4
11 Infrared Sensitive Photodiode on Breadboard . 5
12 Infrared Sensitive Photodiode Circuit Diagram . 5
13 Mounted Ultrasonic Receiver . 5
14 Ultrasonic Receiver Circuit Diagram . 6
15 Ultrasonic Receiver Block Diagram . 6
16 Ultrasonic Receiver on PCB . 6

iii

17 Encoder . 6
18 Mounted Proximity Sensors . 7
19 Digital Infrared Proximity Detector . 7
20 Powerboard Block Diagram . 7
21 Powerboard on PCB . 7
22 Powerboard Circuit Diagram . 8
23 Table of Power Cost . 8
24 Flow Diagram of Code . 11
25 R&D Budget . 11
26 Final Product Cost . 11

iv

Abstract

There is often a need to scour an area without human aid. The reasons for this range from a simple
convenience to a complete lack of feasibility (e.g. hazardous environments for human beings.) A remote-
controlled robotic solution to such a problem may be common, but a more robust solution would require a
robot to think and reason on its own, independently of a human operator. The paper details the design and
testing of one such autonomous mobile robot for the purpose of navigating a predetermined outdoor course
and identifying objects at specific waypoints in the course. (refer to figure 1) The heart of this particular
robotic system is the MC9S12 microcontroller, which relies on a vast sensor suite in order to consistently obtain
feedback regarding its surroundings and make ideal judgments on how to proceed, navigate the course, and
accomplish its objectives. To describe the design process, the essential requirements for a self-sufficient robot
are first described, followed by rigorous detail and analysis of the devices used to accomplish the specific
project objectives. Design testing revealed a robot which could impressively avoid obstacles and reach specific
destinations with few shortcomings. A more robust object detection system has yet to be implemented, but
with these results it seems that robotic autonomy is well within humanitys scientific grasp.

1

1 Introduction

There are often reasons to develop robotic systems
to remotely search areas for objects without requir-
ing a human operator. For example, a search and
rescue robot could make its way through dangerous
environments in order to find the location of a sur-
vivor that needs help, and feed back location data
to a rescue team that can actually help the endan-
gered person. A more efficient system can no doubt
be realized if the robotic side of the system was ca-
pable of functioning autonomously. This project ex-
plores a more primitive incarnation of such a robotic
application. Although the following design criteria
might seem much more trivial, it is important to note
that it could well be the foundation for a more in-
tricate search and rescue system like the one briefly
described above.

Figure 1: Obstacle Course Map

The task at hand in this case was to develop an au-
tonomous robotic system which was capable of nav-
igating a predetermined outdoor course. Five differ-
ent areas (waypoints) on the course were highlighted
by red spray-painted circles of a 3 meter radius. A
variety of objects were prescribed, each with dif-
ferent identifying characteristics: temperature, high
color contrast, ultrasonic emission, etc. It was spec-
ified that one object would be inside of each way-
point. As such it the robot was required to have
the capability to make its way to each of the course
waypoints, systematically seek out an object in each

waypoint, and provide some kind of easily recogniz-
able indication whenever an object was found. There
are a variety of design challenges involved with the
solution to such a problem. This paper details our
teams solution of the design problem and the ways
in which those challenges were tackled.

To put things simply, robotic autonomy requires
that system can function on its own, independent
of a human operator. Two primary elements are re-
quired for such a system, from an electrical engineer-
ing perspective. One is a control unit, or microcon-
troller, to serve as the brains of the robot. A suite
of sensors are also required in order for the robot
to obtain feedback data regarding its surroundings.
By feeding this data back to the microcontroller and
making use of programming algorithms, it is possi-
ble to program a degree of intelligence into a robot.
Consideration also needs to be given to the oper-
ating environment of the robot. Since this particu-
lar project involved an outdoor area, strong consid-
eration had to be given about the requirements of
the mechanical chassis which housed the aforemen-
tioned electronics.

The rest of the paper fleshes out each of these basic
elements a bit more deeply, starting with the reasons
behind the choice of the microcontroller and con-
tinuing on into the individual elements of the sen-
sor suite which make autonomous robotic naviga-
tion possible.

2 Hardware Design

Figure 2: Block Diagram of System Design

2

Figure 3: Odysseus

2.1 Microcontroller

Wytecs Motorola / Freescale MC9S12 has proven to
be a very powerful development tool in the past
microcontroller class (EE 308) at New Mexico Tech.
Since this microcontroller meets the needs of the
project requirements and the project team is inti-
mately familiar with the processor and the subsys-
tems that come with the development kit, we felt that
this was an obvious pick for our control unit.

The MC9S12 has a broad range of interfacing op-
tions that are extremely valuable for our project.
When devices were being considered at the begin-
ning of the project, we rarely encountered a device
that was incompatible with the MC9S12s multiple
interfacing options. Even 3.3v devices can be con-
nected because of the convenient threshold voltages
on the microcontrollers logic inputs (2.5v minimum
for a logical high).

Programming can be done in C, assembly, or both.
The C language is a common and easy to use lan-
guage. Example code is easy to find for C, so if we
found any code that has already been written for any
of the devices used, it would help reduce the amount
of work needed in terms of interfacing.

Debugging is very simple and easy to do on this
microcontroller. There is a DBug12 monitor that
communicates to the terminal for terminal debug-
ging. For example, reading and writing to memory
locations, reading the condition code registers, stack
pointer, and accumulator registers, setting break
points, printing messages and so on. There are also
some useful display options on the development

board. There is a logic probe, LCD display, led ar-
ray, and a seven-segment led display that proved to
be more helpful for certain debugging situations.

2.2 H-Bridges/Motors/Battery

At the beginning of the the design coarse, each team
was given a basic platform, from the instructors to
start their robot foundation from. This includes an
aluminum chassis with four DC motors, two H-
bridges, and a battery. Each component is briefly
summarised.

Figure 4: H-Bridge and Motor Connected to Battery

The Dagu Wild Thumper 4WD all-terrain chassis
was ordered from Pololu and came with the motors,
wheels, and some mounting hardware. [1]

The discrete MOSFET H-bridge (18v15) is a high-
power motor driver that was also ordered from
Pololu and came with a filter capacitor and head-
ers. This device enables us to control the current flow
to the motors via a PWM channel on the microcon-
troller, and the direction of the the motor spin with
general purpose I/O lines. [2]

The power for the robot comes from the lithium
iron phosphate battery purchased from EP BUDDY.
This battery operates around 6.6v and has a
2300mAh life. This will give the robot the ability to
run between 30 minuets and 1.5 hours, depending
on how many of the current subsystems are imple-
mented. [3]

3

2.3 GPS

For an outdoor robot application, our team decided
that a GPS would make our overall system more di-
verse and robust. In our case, the GPS would mainly
be used for acquiring an absolute position fix, cor-
recting the desired heading, and correcting the dead
reckoning measurements.

Figure 5: GPS Connected to Microcontroller Bread-
board

The particular GPS that we chose (the
VENUS634FLPx) is a 65 channel, low power,
small form factor device. [4]

Since this module supports active and passive an-
tennas, we were able to connect a 30dB active an-
tenna to boost the signal strength. Initially we were
concerned about not being able to acquire enough
satellite locks on the course, but after testing, we
found that we could easily maintain a minimum of
seven satellite locks anywhere on the course. Also,
after the GPS had time to warm up, the accuracy of
the position readings were within a few meters (3 - 5
meters, depending on the number of satellite locks,
and how long the GPS had been running). There is
some internal averaging that the GPS does that im-
proves position accuracy.

Unfortunately, we did not have enough time to in-
tegrate the GPS system into the final design. Given
more time this system could easily be integrated to
greatly improve the diversity and robustness of the
navigation system.

2.4 Compass

We chose to use the Honeywell HMC6352 compass
as our go to sensor for obtaining headings and ob-
taining them quickly. This sensor proved to be an
invaluable asset to our dead reckoning system. This
unit has many desirable characteristics. To start, its
operational voltages are very well suited to our ap-
plication and in place power systems, 2.7 to 5.2V. It
uses a 100KHz I2C bus as a slave. Includes com-
mands for calibration, internal averaging, and can
acquire headings on demand or by polling. Another
nice advertised feature of this compass is that it can
be used in strong magnetic field environments.

Figure 6: Digital Compass Connected to Microcon-
troller Breadboard

One feature that is lacking from this compass is
tilt compensation. Tilt compensated compasses were
out of the budget of this project and this compass
was easily the most fully featured compass at our
disposal to get the job done.

This compass provides up to a tenth degree reso-
lution, outputted in a 12-bit format over two bytes of
I2C. We initially set the compass to average 8 head-
ings internally before sending us our data. In soft-
ware we then took the 8 most significant bits, which
virtually eliminated all and any jitter associated with
the measurements.

2.5 Infrared Thermometer

The thermometer was intended for measuring the
temperatures of objects at the waypoints. At way-
point two there is a very cold object, and our team

4

thought it would be nice to determine the temper-
ature of that object as a form verification. The ther-
mometer that we found and tested was an IR temper-
ature sensor, the MLX90614, that is capable of mea-
suring ambient and object temperature. [5]

Figure 7: Mounted Infrared Thermometer

Figure 8: Infrared Thermometer Circuit Diagram

This device has a very low power consumption
and interfaces to the microcontroller via the I2C bus.
The data acquisition very much like the compass and
can send relevant data on demand.

Testing showed that the thermometer had a range
of a couple of feet indoors and gave reliable read-
ings, but once we moved outside, the data became

Figure 9: Infrared Thermometer on PCB

unusable. We are sure that the cause of the loss of
accuracy is due to the sun emitting so much IR inter-
ference that thermometer becomes unusable.

This device was not integrated into the final de-
sign for obvious reasons (it was unusable for our
case).

2.6 Photodiodes

Each of the waypoints was marked by a red 5 meter
diameter circle that the robot needed to enter in or-
der to find the object or location. The initial idea for
the photodiode was to use it to measure the visible
light waves being reflected off of the sidewalk and
grass through a voltage output. Since the grass and
sidewalk are reflecting different visible light waves
compared to the red line, the plan was to use the dif-
ference in the voltage output to determine when the
red line was crossed over.

Figure 10: TSL257 Photodiode Circuit Diagram

5

The main source of error for both the TSL257 High-
Sensitivity Light-to-Voltage Converter [8] was that it
was too sensitive to ambient light and immediately
saturated when outdoors making the output voltage
unusable for data acquisition. The circuitry required
to change the gain of the TSL257 was built within
the component (see figure 10) making it difficult to
change the sensitivity of the component to function
reliably in ambient light.

Figure 11: Infrared Sensitive Photodiode on Bread-
board

Figure 12: Infrared Sensitive Photodiode Circuit Di-
agram

For the PNZ300 Silicon PIN Photodiode [9]
viewed the infrared spectrum of light making it more
reliable in detecting that red line when crossed be-
cause red visible light is infrared on the light spec-
trum. (circuit diagram given in figure 12) The two
problems that arose for the PNZ300 was that it re-
lied on some amounts of light to detect the waves

being reflected. To create some light for the photo-
diode, a SSF-LXH103UWC [10] was added, but was
unable to emit the amount white light required for
the photodiode. The other problem was that the
PNZ300 needed to be closer to the ground for ac-
curate readings which meant it would be in a haz-
ard zone for when the robot entered uneven terrain.
These two problems made the PNZ300 unusable be-
cause it could not accurately given data with the
variation of light and it could not handle the outdoor
terrain.

2.7 Ultrasonic Receiver

One of the waypoints contained an ultrasonic trans-
mitter which the robot was intended to detect. The
transmitting device, provided by the course instruc-
tors, consisted of an array of ultrasonic transducers
which radiated a 40kHz ultrasonic signal into a re-
flector. The reflector had the effect of radiating a
strong, uniform 40kHz signal in all directions in the
plane of the robots height.

Figure 13: Mounted Ultrasonic Receiver

In order for the robot to effectively react to the
ultrasonic source point, ultrasonic receiver circuitry
was built in house. This not only allowed for pre-
cise control over the range at which the 40kHz signal
could be detected, but served as a means to cut cost
as well. The resulting circuit design is given below:

The receiver circuit makes use of a 40kHz trans-
ducer, the MaxSonar MB1100. The AD622 instru-
mentation amplifiers are an obvious choice in order
to increase the small transduced signal into some-
thing which is easy to work with, electronically. This

6

Figure 14: Ultrasonic Receiver Circuit Diagram

particular instrumentation amplifier was chosen for
convenience and its low cost.

Figure 15: Ultrasonic Receiver Block Diagram

The circuit (see figure 14, or the block diagram
given in figure 15) relies on a virtual ground config-
uration in order to emulate negative voltages, since
dual rails need to be supplied for this particular chip.
The gain of the first amplification stage is is actually
not enough amplification for the rest of the system to
reliably detect an ultrasonic signature. However, this
is a decent amount of gain which the amplifier can
provide reliably. Although the AD622AN is capable
of supplying a gain of 1000, attempting such a high
gain while operating at ultrasonic frequencies results
in slewed output which is useless for the robots pur-
poses. To circumvent this, the second gain stage is
added with the second AD622. Ultimately then, the
gain of the entire circuit is dependent on the resis-
tor between pins 1 & 8 of the second AD622. Using
a value of 4.7k ohms as given in the schematic, the
amplifiers add a total gain of 38 dB to the incoming
signal. The amplifiers are followed with a clamp and
half-wave rectifier for generating a DC level from the
magnitude of the AC ultrasonic signal.

This allows for a maximum ultrasonic signal de-
tection (i.e. a DC level of roughly 4.5V) at most about
3 feet away from the transmitter. If the receiver was
placed further away, a weaker signal would be re-
ceived, but it would be possible to align the robot in
a direction of maximum signal strength in order to
systematically hone in on the ultrasonic transmitter.

Figure 16: Ultrasonic Receiver on PCB

An algorithm has not yet been programmed into the
robot, but to do so would pose little challenge.

2.8 Wheel Encoders

A wheel encoder is one of the devices we used to
give feedback to our controller in order to have a
true motor control system. Since it was unnecessary
to have a fully functioning motor controller we used
the encoder to measure the relative distance trav-
eled.

Figure 17: Encoder

In order to simplify wire management, the cir-
cuitry for the IR encoder was shrink-wrapped into
the base of the device since it was simple enough.
This allowed us to reduce the wiring to power and
data. Two encoders were installed on the rear motors
in order to improve redundancy and easy of expand-
ability. The encoder wheels were simple cardboard
cutouts that were glued to the axle of the motors, as
shown in figure 17. [6]

There was some experimentation with a fuzzy
logic motor control system early in the semester, but
due to time constraints and the unexpected com-
plexity of integration, we were forced to simplify
our navigation problems buy operating around fixed

7

speeds.

2.9 Infrared Proximity Detection

Outdoor environments are unpredictable and pose
many challenges that need to be considered and
overcome when designing an autonomous robot.
One of the major challenges is being able to detect
possible walls or cliffs in order to avoid them and
find a safe path to travel. We felt it was neces-
sary that the object detection and avoidance system
would be a high priority.

Figure 18: Mounted Proximity Sensors

Figure 19: Digital Infrared Proximity Detector

The proximity sensors that we thought would be
best suited for this system were IR proximity sen-
sors. [7] These particular ones have a vary narrow
beam width, a range of 10cm, and are resilient to
ambient light. This gave us the ability to have an
array of sensors that could tell the controller where

an object was encountered; and as a result, the con-
troller would be able to determine how to avoid the
encountered object.

The proximity detection and avoidance algorithms
were successfully integrated into our final product.
In fact, the collision avoidance algorithm that our
team developed, on our own, was very simple and
worked surprisingly well. During field testing, we
tried to get our robot stuck in all sorts of situations.
The only problem that could not be overcome in a
timely manner was getting stuck in a corner, but this
was not a problem since there would be no corner
encounters.

2.10 Powerboard

The powerboard was created to supply power to
all subsystems of the robot ranging from the sen-
sors to the MC9S12. It was designed to take the in-
put of the EP Buddy 6.6v battery through a LM3578
switching regulator [11] that would output around
10v to power the MC9S12 (block diagram given in
figure 20). A few difficulties arose when designing
the powerboard causing 6 revisions of the board and
consuming valuable time.

Figure 20: Powerboard Block Diagram

Figure 21: Powerboard on PCB

One problem that arose was the board functioned
correctly when tested separately, but caused a cur-

8

Figure 22: Powerboard Circuit Diagram

rent overload on the power supply box when com-
bined and tested together. This problem was over-
come with the realization that the powerboard was
pulling more current than the power supply box
could supply causing a brief current overload. When
the powerboard was used to power the sensors, it
functioned perfectly outputting the correct voltages
to power subsystems.

Another problem was the etching process to create
a printed circuit board was unreliable for large com-
plex circuits because the traces had a tendency to not
attach to the copper board. In order to etch the board,
traces had to be drawn in which turned out to be a
tedious task. Drilling also was a problem because it
was difficult to drill the holes perfectly from compo-
nents. To overcome these problems, the process of
milling a circuit board and having a machine drill
the holes and create the traces was used and proved
to be extremely effective in saving time.

A problem towards the end of the project the in-
ductor in the switching regulator could not han-
dle the current when all the subsystems were con-
nected and would burn out almost immediately af-
ter power was connected. To overcome the problem,
the switching regulator was not used to power the
MC9S12 and instead, 9v batteries in parallel were
used to power the HC9S12 while the linear regu-
lators from the powerboard supplied power to the
other subsystems without the help of the switching
regulator.

The powerboard was the largest set back within

the project taking up 4 weeks of time that could have
been spent elsewhere developing the other sensor
subsystems. If given the option, the 9v batteries in
parallel would have been used to power the MC9S12
a lot sooner allowing time for other sensor subsys-
tems to be tested and implemented in the final de-
sign, shown in figure 22 (photo of the board given in
figure 21).

2.11 Power Budget

A table is given below (in figure 23) which shows the
current draw for every single component which has
thus far been implemented on the robot.

Figure 23: Table of Power Cost

As can be seen, the primary source of power dis-
sipation lies in the motors. The sensor suite to-
gether only pulls about one amp altogether, while
each motor on the robot is capable of pulling 6.6A
when moving forward at full speed. Such figures
presented here are a worst-case scenario, as the algo-
rithms implemented thus far on the robot do not ac-
tually ever call on the motors to drive at such strenu-
ous speeds. It is worth noting however that the bat-
tery can sustain a 70A current draw for a very short
period of time, which is far more than the projected
worst case described here. During typical operation
it was observed that testing of the robot could go
uninterrupted for about 2 hours without needing to
recharge the battery. Since the robot typically runs
the outdoor course in 5-6 minutes, battery life is far
from an issue.

2.12 Chassis Construction

Our robot chassis served the function of a support
structure for the mounting of all subsystem com-
ponents, as well as providing a protective barrier

9

against collisions and sunlight. Due to the low bud-
get and time constraints, we had to find a cheap and
quick solution to this problem. Luckily, there was a
lot of support from Norton Euart from the Workman
shop. A lot of aluminum and plastic parts fabricated
for the robot chassis were salvaged from the scrap
material in the shop.

The brackets used to mount the wheel encoders
were made from scrap aluminum sheets that were
cut drilled and bent to the desired dimensions. This
bracket was secured to the motor enclosure bolts
near the axle on both rear wheels.

A front bumper, constructed from an aluminum
alloy sheet, was used to help protect the robot from
head on collisions as well as providing mounting
from the IR proximity detectors. The bumper was
attached to the front end of the original robot chas-
sis.

An outer shell was constructed from a plastic sheet
that was cut to the desired dimension and applied a
heat gun to fold the edges. This shell was used to
mount the microcontroller, ultrasonic receiver, and
IR thermometer. The shell worked out great because
it kept all the wires and components well isolated
from encountered obstacles, for example, bushes and
rollovers. The microcontroller was not mounted un-
derneath the shell during testing, but when the robot
is complete the microcontroller could be moved un-
derneath using the same mounting holes.

3 Software Design

Approaching the software for the HCS12 microcon-
troller was an exercise that closely mirrored the skills
we learned in our 308 microcontrollers class. We
used the Freescale Codewarrior Suite and its in-
cluded libraries, as well as other functions provided
to us in that class for our particular microcontroller.
All of our programming was done in C, and a lot
of our programming was made to be debugging
friendly and intuitive.

3.1 Interfacing and Integration

The first thing we did was interface each sensor in-
dividually and make simple programs to test their
functionality. When we had all the sensors figured
out we worked toward integration. In order to make
it easier for our data to be pulled in simultaneously
and for our functions to be able to use all the data
and use it as soon as it is available we relied heav-
ily on interrupts. An interrupt is an external event
that causes the CPU to save what it is doing, set it
aside, and tend to something else. In this manner a
function can work off the most current set of data at
all times. An interrupt service routine may tend to a
sensor, retrieve up to date data and when the CPU re-
turns to what it was doing it has the latest data ready
for action.

3.2 The Real Time Interrupt

Our software relies heavily on what is known as the
realtime interrupt. The realtime interrupt is an in-
terrupt that occurs on regular intervals, for example,
every 5ms. The easiest example of how we used the
realtime interrupt is with our compass. Everytime
we have a realtime interrupt occur we poll our com-
pass for new heading data. The new heading data is
then stored into a register (PORTB) so that all of our
other functions can always reference PORTB for the
most up to date heading information.

Another example of how we used the realtime in-
terrupt is to set up time delays. There are times when
you would like for the program to stall for a cer-
tain amount of time before moving on. For example,
you can your wheels run for set duration. We did
this by creating a global variable that holds a count
of how many realtime interrupts you would like to
pass before moving on. Then in the realtime inter-
rupt you just decrement the count, you move on once
the count reaches zero.

In motor control, you do not want your motors to
just jolt on and off instantly, this will cause intense
acceleration and put heavy amounts of stress on the
chassis, wheels and any components on the robot.
We simply created global variables that are the re-
quested duty cycles. In the realtime interrupt, there
is a routine that checks if the actual duty cycles are

10

at the requested cycles. If not, it makes a linear tran-
sition to that duty cycle by incrementing or decre-
menting the registers that control PWM duty cycle.

3.3 Timer Input Capture Output Com-
pare (TICOC)

Input capture is another way of looking for data. To
put it simply, input capture looks for a control sig-
nal to go high or low, particularly the transition of
a falling edge or a rising edge. We use the input
capture and its interrupt to work with our wheel en-
coders and our forward mounted proximity sensors.

Our proximity sensors have very simple behav-
ior, if an object comes within 10cm of the sensor, it
changes logic levels. We used input capture in or-
der to use this change in logic level to immediately
cater to this event. It is fairly obvious the event we
were looking for was when our robot was about to
run into something, in which case, the first thing you
want to do is stop. The microcontroller looks for both
rising and falling edges, in other words, looking for
when an object comes into view and then goes out of
view. We set global variables we called flags, and
they would be set true if something was obstruct-
ing a path or set false if there were no obstructions.
With this information set as global variables, now
any function can monitor them and make decisions
accordingly.

Our wheel encoders work in a similar manner, the
logic level changes as the IR receiver is able to see the
transmitter on the other side of our encoder wheel.
In this sense we can use input capture to keep a count
of how many times the sensor comes in and out of
view. By counting how much the wheel goes by we
can effectively count our distance. In our software
we created a scheme so that all functions could track
how far the desired distance to move is. We did this
with global variables that show how far our robot
still has to go. As the robot travels the interrupts gen-
erated by the wheel encoders decrement this count.

3.4 The Big Picture

We wanted to make all of our movement functions
tied to the same parameters that would be stored

globally, that way, any function, such as those run
in interrupts could change them, allowing the way
our robot reacts to new data to be very intricate. The
things we store globally are:

Wait time - How long a program is waiting for,
decrements in realtime interrupt.

Requested duty cycles, left and right - Sets the
speed of the motors, adjusts in realtime interrupt.

Requested Distance - How far to travel, this decre-
ments as the wheels spin, uses input capture inter-
rupt.

Proximity Flags - Flags when objects have or have
not triggered proximity sensors, input capture inter-
rupt.

Compass Heading - The compass gets polled and
the robots current heading is always stored and kept
up to date, this is done in the realtime interrupt.

To make coding for our robot simple we cre-
ated many simple functions to control movement,
speed, and direction. We used a bottom up approach
to building movement commands, creating simple
ones at first and them putting them together to create
more intricate maneuvers.

For example,
DIR(left, right)
This function simply changes the direction of the

tires, a 1 for forward and a 0 for reverse.
DUTY(left,right)
This function changes the duty cycle for the

wheels, this function looks for values between 0 and
255, 255 being maximum speed

WAIT(intervals)
This function waits for the desired number of real-

time interrupts to pass
Early in our development, while we were still

waiting for sensor integration to take place, we used
time based motion. You can see how easy it would be
create some movement commands like this, for ex-
ample, move forward at half speed for 100 realtime
interrupts.

FORWARD DURATION(speed, time)
DIR(1,1)
set wheels forward
DUTY(speed,speed)
set the requested speed
WAIT(time)

11

wait for the time to elapse
DUTY(0,0)
stop
This same function can also be created so that the

robot travels a certain distance before stopping in-
stead of travelling for a certain amount of time.

We created many different movement functions in
this manner. As we got more of our sensors inte-
grated, we could make the functions more robust.
For example, in order to keep a straight heading, be-
fore moving forward the function can look at PORTB
to see what way the robot is facing. As the robot
moves forward, it can keep looking at PORTB, which
always has the most up to date heading. If the func-
tion detects that the robot is veering left our or right
from the original heading, it can adjust the duty cy-
cles to compensate and get the robot back on course.

If the forward proximity sensors detect an object
while the robot is moving forward, they can execute
an instant stop in an interrupt. The interrupt ser-
vice routine can buffer all the global variables, set
the duty cycles to zero to instantaneously stop, and
then execute its own movement commands to try to
move out of the way of the object or to move around
it. When it is done it can simply take the values from
the buffer, put them back in to the global variables
and return. When the program returns the system
is back in the state it was before the collision avoid-
ance was triggered. Even though the robot is now
stopped, the realtime interrupt will return the duty
cycles back to their old requested values.

Figure 24: Flow Diagram of Code

Here is a diagram that emphasizes how the func-
tions are only dependent on the global variables

which are initially set. The interrupt service routines
then manipulate these variables as a response to sen-
sor data, making all the fine details transparent to the
programmer. The programmer simply has to know
what the global variables mean, and the rest is han-
dled for him/her.

4 Budget

Figure 25: R&D Budget

Figure 26: Final Product Cost

As is evident from the above tables (figures 25 &
26), the R&D costs of the robot exceed the allotted
budget by a significant margin. This is somewhat ex-
pected due to the fact that most components did not
simply work out of the box. In some cases more com-
ponents were purchased than required, in order to
brace for possible flaws & component damage in the
analog circuit design process. Indeed, such analog
circuit design issues did arise multiple times, par-
ticularly during design/testing of the power board.
In addition to this, the initial inexperience with the
chassis hardware led to some device damage early
in the semester and replacement H-bridges were ob-
tained. This replacement cost also makes up a sub-
stantial portion of the budget overflow in the R&D
section of the table.

On the other hand, all the components currently
implemented on the robot add up to a total of
$742.49, which is underneath the allocated budget

12

limit by $7.51. Although this is currently under the
spending limit, it is anticipated that a robust color-
sensing system for accurate waypoint detection will
send the overall robot cost over budget by a very
small margin.

5 Conclusion

Through the design of an autonomous naviga-
tion robot, lessons were experienced and learned.
Lessons in money and time management and group
cooperation and communication were learned and
skills acquired from previous courses were used to
effectively design a robot. Our robot was able to
reach all five waypoints relying on dead-reckoning
alone. It had robust collision avoidance which
granted it the ability to work its way out of difficult
situations. Our robots body was designed for out-
door terrain and could handle rocks and wood chips
with ease.

Although we are behind schedule, with more
work our robot will have the capability of navigat-
ing outdoors with the use of both a GPS and com-
pass making it closer to being considered a truly au-
tonomous robot. In the future, we will implement a
fully functional powerboard that can power the mi-
crocontroller and other subsystems without causing
the inductor in the switching regulator to burn out.
We will implement a searching algorithm to scan
the waypoint for objects and research more on line-
sensing to determine when the waypoint has been
entered. We will integrate the remaining sensors
into the final design and have a fully functioning au-
tonomous navigating robot capable of reaching each
waypoint and detecting the objects within.

References

[1] Pololu Robotics & Electronics, Dagu
Wild Thumper 4WD All-Terrain Chassis,
www.Pololu.com, 2011. [Online].
Available: http://epbuddy.com/index.php?main page=product info&products id=49,
[Accessed: May. 8, 2011]

[2] Pololu Robotics & Electronics, Pololu High-
Power Motor Driver 18v15, www.Pololu.com,
2011. [Online].
Available: http://www.pololu.com/catalog/product/755.
[Accessed: May. 8, 2011]

[3] EP BUDDY, 2S1P Battery Pack, epbuddy.com,
2011. [Online].
Available: http://epbuddy.com/index.php?main page=product info&products id=49.
[Accessed: May. 8, 2011]

[4] KYTRAQ, 65 channel Low Power GPS Receiver
— Flash, VENUS634FLPx datasheet, Nov. 2008
[Revised Jan. 2009]

[5] Melexis, Single and Dual Zone Infra Red Ther-
mometer in TO-39, MLX90614 family datasheet,
Sept. 2010 [Revision 006]

[6] Fairchild Semiconductor, Optologic Optical In-
terrupter Switch, H21LTB datasheet, Nov. 2004

[7] SHARP, Distance Measuring Sensor Unit, Dig-
ital output (100 mm) type, GP2Y0D810Z0F
datasheet, Dec. 2006

[8] TAOS,High-Sensitivity Light-to-Voltage Con-
verter, TSL257 datasheet, Sept. 2007.

[9] Panasonic, Silicon PIN Photodiodes, PNZ300,
PNZ300F datasheet, Mar. 2001.

[10] Lumex, Ultra White LED, Water Clear LENS,
SSF-LXH103UWC datasheet, Dec. 2001.

[11] National Semiconductor, Switching Regulator,
LM3578A datasheet, Feb. 2005.

