## Earth Shape Geoid and Reference Ellipsoid

Geoid: Gravitational equipotential surface which "best" fits (in a least square sense) the mean sea level

Reference Ellipsoid: A
mathematical approximation to the geoid


- The World Geodetic System (WGS 84)
- Provides a model for the geoid, earth rate, and gravity
- This model is used by the Global Positioning System (GPS)
- The max. difference between the ref. ellipsoid and the geoid is +3 meters to -51 meters (approx).



## Specific Force, Gravitation, and Gravity

- Specific force is the non-gravitational force per unit-mass
- Gravitational force is mass attraction $\vec{\gamma}_{i b}^{?}$
- Specific force sensed when stationary is referred to as the acceleration due to gravity $g_{b}$
- The centrifugal term is $\omega_{e}^{2} r_{e} \simeq\left(73 \times 10^{-6}\right)^{2} 6.4 \times 10^{6}=0.034 \mathrm{~m} / \mathrm{s}^{2}$
- This is at the equator
- The gravitational force is $\sim 9.8 \mathrm{~m} / \mathrm{s}^{2}$ on the surface of the ellipsoid

$$
\vec{g}_{b}^{?}=\vec{\gamma}_{i b}^{?}-\Omega_{i e}^{?} \Omega_{i e}^{?} \vec{r}_{i b}^{?} \quad \vec{f}_{i b}^{b}=\overrightarrow{\mathrm{a}}_{i b}^{b}-\vec{g}_{b}^{b}
$$

## Gravitational force $\neq$ acceleration due to gravity

## Geodetic to ECEF Position

$$
\vec{r}_{e b}^{e}=\left[\begin{array}{c}
x_{e b}^{e} \\
y_{e b}^{e} \\
z_{e b}^{e}
\end{array}\right]=\left[\begin{array}{c}
\left(R_{E}+h\right) \operatorname{Cos}\left(L_{S}\right) \operatorname{Cos}\left(\lambda_{b}\right) \\
\left(R_{E}+h\right) \operatorname{Cos}\left(L_{S}\right) \operatorname{Sin}\left(\lambda_{b}\right) \\
\left(R_{E}\left(1-e^{2}\right)+h\right) \operatorname{Sin}\left(L_{S}\right)
\end{array}\right]
$$



