Earth Shape Geoid and Reference Ellipsoid

<u>Geoid</u>: Gravitational equipotential surface which "best" fits (in a least square sense) the mean sea level

Reference Ellipsoid: A mathematical approximation to the geoid

- The World Geodetic System (WGS 84)
 - Provides a model for the geoid, earth rate, and gravity
 - This model is used by the Global Positioning System (GPS)
 - The max. difference between the ref. ellipsoid and the geoid is +3 meters to -51 meters (approx).

NASA's Grace Gravity Model Lecture 6: Slide 1 Specific Force, Gravitation, and Gravity

- Specific force is the non-gravitational force per unit-mass
 - Gravitational force is mass attraction $\vec{\gamma}_{ib}^{?}$
 - Specific force sensed when <u>stationary</u> is referred to as the acceleration due to gravity g_b
- The centrifugal term is $\omega_e^2 r_e \simeq (73 \times 10^{-6})^2 6.4 \times 10^6 = 0.034 \, m/s^2$
 - This is at the equator
- The gravitational force is ~9.8m/s² on the surface of the ellipsoid

$$\vec{g}_{b}^{?} = \vec{\gamma}_{ib}^{?} - \Omega_{ie}^{?} \Omega_{ie}^{?} \vec{r}_{ib}^{?}$$
 $\vec{f}_{ib}^{b} = \vec{a}_{ib}^{b} - \vec{g}_{b}^{b}$

Gravitational force \neq acceleration due to gravity

25 February 2011

Geodetic to ECEF Position

