
Inertial SensorsInertial Sensors
Gyroscopes

• Gyroscope ⇔ Angular Rate Sensor
• Three main types

� Spinning Mass

� Optical

• Ring Laser Gyros• Ring Laser Gyros

• Fiber Optic Gyros

� Vibratory

• Coriolis Effect devices

– MEMS
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Inertial SensorsInertial Sensors
Gyroscopes – Spinning Mass

• Spinning Mass Gyroscopes
� Conservation of Angular Momentum

� The spinning mass will resist

change in its angular momentum

� Angular momentum� Angular momentum

• H = I ω (Inertia * Angular velocity)

� By placing the gyro in a pair of frictionless gimbals it is free 

to maintain its inertial spin axis

� By placing an index on the x-gimbal axes and y-gimbal axis 

two degrees of orientational motion can be measured
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Inertial SensorsInertial Sensors
Gyroscopes – Spinning Mass

• Precession
� Disk is spinning about z-axis

� Apply a torque about the x-axis

� Results in precession about the y-axis

• τ = ω × H
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Inertial SensorsInertial Sensors
Gyroscopes - Optical

• Fiber Optical Gyro (FOG)
� Basic idea is that light travels at a 

constant speed

� If rotated (orthogonal to the plane) 

one path length becomes longer and 
R

ω

one path length becomes longer and 

the other shorter

� This is known as the Sagnac effect

� Measuring path length change (over 

a dt) allows ω to be measured
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Inertial SensorsInertial Sensors
Gyroscopes - Optical

• Fiber Optical Gyro (FOG)
� Measure the time difference betw

the CW and CCW paths

� CW transit time = tCW

� CCW transit time = tCCW

� L = 2πR+Rωt = ct

R
ω

� LCW = 2πR+RωtCW = ctCW

� LCCW = 2πR-RωtCCW = ctCCW

� tCW = 2πR/(c-R ω)

� tCCW= 2πR/(c+R ω)

� With N turns

� Phase
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Inertial SensorsInertial Sensors
Gyroscopes - Optical

• Ring Laser Gyro
� A helium-neon laser produces two

light beams, one traveling in the 

CW direction and the other in the

CCW direction

� When rotating

• The wavelength in dir of rotation

increases (decrease in freq)

• The wavelength in opposite dir

decreases (decrease in freq)

• Similarly, it can be shown that 
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Inertial SensorsInertial Sensors
Gyroscopes - Vibratory

• Vibratory Coriolis Angular Rate Sensor
� Virtually all MEMS gyros are based on this effect

ωω
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Inertial SensorsInertial Sensors
Gyroscopes - Vibratory

• Basic Planar Vibratory Gyro

Ω
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Inertial SensorsInertial Sensors
Gyroscopes - Vibratory

• In plane sensing (left)
• Out of plane sensing (right)
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Inertial SensorsInertial Sensors
SummarySummary

• Accelerometers
� Measure specific force of the body frame wrt the inertial 

frame in the body frame coordinates

• Need to subtract the acceleration due to 

gravity to obtain the motion induced quantity

b

ib
f
�

� In general, all points on a rigid body do NOT experience 

the same linear velocity

• Gyroscopes
� Measure the inertial angular velocity 

• Essentially, the rate of change of orientation

� All points on a rigid body experience the 

same angular velocity
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Inertial Sensor ModelingInertial Sensor Modeling
Some Standard TerminologySome Standard Terminology

• Accuracy: 
� Proximity of the measurement to the true value

• Precision:
� The consistency with which a measurement 

can be obtained

• Resolution: • Resolution: 
� The magnitude of the smallest detectable change.

• Sensitivity: 
� The ratio between the change in the output signal to a small 

change in input physical signal. Slope of the input-output fit 
line.

• Linearity: 
� The deviation of the output from a "best” straight line fit for a 

given range of the sensor
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Inertial Sensor ModelingInertial Sensor Modeling
Accuracy Accuracy vsvs PrecisionPrecision

Neither accurate nor precise

Accurate but not precise
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Precise but not accurate Both accurate and precise



Inertial SensorsInertial Sensors
Inertial Sensor Error SourcesInertial Sensor Error Sources

• Bias – Often the most critical error source
� Fixed Bias

• Deterministic in nature and can be addressed by calibration

• Often modeled as a function of temperature

� Bias Stability

FBb

BSb s FB BSb b b= +
� Bias Stability

• Varies from run-to-run as a random constant

� Bias Instability

• In-run bias drift – Typically modeled as a random walk
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Gyro bias errors are a major INS error source
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Inertial SensorsInertial Sensors
Inertial Sensor Error SourcesInertial Sensor Error Sources

• Scale Factor
� Fixed Scale Factor Error

• Deterministic in nature and can be 

addressed by calibration

• Often modeled as a function of temperature

Ref: Park, 04

� Scale Factor Stability

• Varies from run-to-run as a random constant

• Typically given in parts-per-million (ppm)
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The scale factor represents a linear approximation to the 

steady-state sensor response over a given input range – True 

sensor response may have some non-linear characteristics
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Inertial SensorsInertial Sensors
Inertial Sensor Error SourcesInertial Sensor Error Sources

• Misalignment
� Refers to the angular difference between the ideal sense 

axis alignment and true sense axis vector

• A deterministic quantity typically given in milliradians

f m f m fδ = + m mδω ω ω= +

� Combining Misalignment & Scale Factor
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Inertial SensorsInertial Sensors
Inertial Sensor Error SourcesInertial Sensor Error Sources

• Cross-Axis Response
� Refers to the sensor output which occurs when the device 

is presented with a stimulus which is vectorially orthogonal 

to the sense axis
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Misalignment and cross-axis response 

are often difficult to distinguish –

Particularly during testing and 

calibration activities



Inertial SensorsInertial Sensors
Inertial Sensor Error SourcesInertial Sensor Error Sources

• Other noise sources
� Typically characterized as additive in nature

• May have a compound form

– White noise

» Gyros: White noise in rate ⇒ Angle random walk

⇒» Accels: White noise in accel ⇒ Velocity random walk

– Quantization noise

» May be due to LSB resolution in ADC’s

– Flicker noise

– Colored noise
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A more detailed discussion of noise 

will be given at a later date (25 March)



Inertial SensorsInertial Sensors
Inertial Sensor Error SourcesInertial Sensor Error Sources

• Gyro Specific Errors
� G-sensitivity

• The gyro may be sensitive to acceleration

• Primarily due to device mass assymetry

• Mostly in Coriolis-based devices
b b

ib g ib
G fδω =
��

• Mostly in Coriolis-based devices

� G2-Sensitivity

• Anisoelastic effects 

• Due to products of orthogonal forces
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Inertial SensorsInertial Sensors
Inertial Sensor Error SourcesInertial Sensor Error Sources

• Accelerometer Specific Errors
� Axis Offset

• The accel may be mounted at a lever-

arm distance from the “center” of the 

Inertial Measurement Unit (IMU)

Leads to an “ω2r” type effect– Leads to an “ω2r” type effect
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Inertial SensorsInertial Sensors
Modeling Inertial SensorsModeling Inertial Sensors

• Accelerometer model

• Gyro Model

( )b b b b

ib ib ib a a ib af f f b I M f wδ= + = + + +
� � � � ��

• Gyro Model

• Typically, each measures along a single sense 
axis requiring three of each to measure the 3-
tupple vector
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Inertial SensorsInertial Sensors

• Current Accelerometer Application Areas
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Ref: “INS/GPS Technology Trends“ by

George T. Schmidt RTO-EN-SET-116(2010)



Inertial SensorsInertial Sensors

• Current Gyro Application Areas
Earth Rate
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Ref: “INS/GPS Technology Trends“ by

George T. Schmidt RTO-EN-SET-116(2010)



Inertial SensorsInertial Sensors

Cost as a function of Performance and 

technologyDifferent “Grades” of Inertial Sensors
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Ref: INS Tutorial, Norwegian Space Centre, 2008.06.09


