Inertial Sensors Gyroscopes

- Gyroscope ⇔ Angular Rate Sensor
- Three main types
 - Spinning Mass
 - Optical
 - Ring Laser Gyros
 - Fiber Optic Gyros
 - Vibratory
 - Coriolis Effect devices
 - MEMS

Inertial Sensors Gyroscopes – Spinning Mass

- Spinning Mass Gyroscopes
 - Conservation of Angular Momentum
 - The spinning mass will resist change in its angular momentum
 - Angular momentum
 - $H = I \omega$ (Inertia * Angular velocity)

- By placing the gyro in a pair of frictionless gimbals it is free to maintain its inertial spin axis
- By placing an index on the x-gimbal axes and y-gimbal axis two degrees of orientational motion can be measured

Inertial Sensors Gyroscopes – Spinning Mass

Precession

Inertial Sensors Gyroscopes - Optical

- Fiber Optical Gyro (FOG)
 - Basic idea is that light travels at a constant speed
 - If rotated (orthogonal to the plane) one path length becomes longer and the other shorter
 - This is known as the Sagnac effect
 - Measuring path length change (over a dt) allows ω to be measured

Gyroscopes - Optical

Fiber Optical Gyro (FOG)

Measure the time difference betw the CW and CCW paths

 $\phi_c \approx 2\pi \Delta t f_c = 2\pi \Delta t c / \lambda_0 =$

- CW transit time = t_{CW}
- CCW transit time = t_{CCW}
- $L_{CW} = 2\pi R + R\omega t_{CW} = ct_{CW}$
- $L_{ccw} = 2\pi R R\omega t_{ccw} = ct_{ccw}$ $\Rightarrow \Delta t \simeq \frac{4\pi R^2 \omega}{c^2}$
- $t_{CW} = 2\pi R/(c-R \omega)$
- $t_{CCW} = 2\pi R/(c+R \omega)$ $\Delta t \simeq \frac{N4A\omega}{M}$
- With N turns
- Phase

 $8\pi NA\omega$

Detector

W,

Transmitter

Splittesp"

R

R

Inertial Sensors Gyroscopes - Optical

- Ring Laser Gyro
 - A helium-neon laser produces two light beams, one traveling in the CW direction and the other in the CCW direction
 - When rotating
 - The wavelength in dir of rotation increases (decrease in freq)
 - The wavelength in opposite dir decreases (decrease in freq)
 - Similarly, it can be shown that

© 2004 Encyclopædia Britannica, Inc.

4 March 2011

Inertial Sensors Gyroscopes - Vibratory

- Vibratory Coriolis Angular Rate Sensor
 - Virtually all MEMS gyros are based on this effect

Inertial Sensors Gyroscopes - Vibratory

Basic Planar Vibratory Gyro

Inertial Sensors Gyroscopes - Vibratory

- In plane sensing (left)
- Out of plane sensing (right)

Inertial Sensors Summary

- Accelerometers
 - Measure specific force of the body frame wrt the inertial frame in the body frame coordinates
 - Need to subtract the acceleration due to gravity to obtain the motion induced quantity
 - In general, all points on a rigid body do <u>NOT</u> experience the same linear velocity
- Gyroscopes
 - Measure the inertial angular velocity
 - Essentially, the rate of change of orientation
 - All points on a rigid body experience the same angular velocity

Inertial Sensor Modeling Some Standard Terminology

- Accuracy:
 - Proximity of the measurement to the true value
- Precision:
 - The consistency with which a measurement can be obtained
- Resolution:
 - The magnitude of the smallest detectable change.
- Sensitivity:
 - The ratio between the change in the output signal to a small change in input physical signal. Slope of the input-output fit line.
- Linearity:
 - The deviation of the output from a "best" straight line fit for a given range of the sensor

Inertial Sensor Modeling Accuracy vs Precision

Inertial Sensor Error Sources

- Bias Often the most critical error source
 - Fixed Bias b_{FB}
 - Deterministic in nature and can be addressed by calibration
 - Often modeled as a function of temperature
 - Bias Stability b_{BS}
- $b_s = b_{FB} + b_{BS}$
- Varies from run-to-run as a random constant
- Bias Instability b_{BI}

$$b_d = b_{BI}$$

In-run bias drift – Typically modeled as a random walk

$$\delta f = b_{a,BI} + b_{a,FB} + b_{a,BS} = b_a$$

$$\delta \omega = b_{g,BI} + b_{g,FB} + b_{g,BS} = b_g$$

Gyro bias errors are a major INS error source

- Scale Factor
 - Fixed Scale Factor Error
 - Deterministic in nature and can be addressed by calibration
 - Often modeled as a function of temperature
 - Scale Factor Stability
 - Varies from run-to-run as a random constant
 - Typically given in parts-per-million (ppm)

$$\delta f = s_a f$$

$$\delta\omega = s_a\omega$$

The scale factor represents a linear approximation to the steady-state sensor response over a given input range – True sensor response may have some non-linear characteristics

Inertial Sensor Error Sources

- Misalignment
 - Refers to the angular difference between the ideal sense axis alignment and true sense axis vector
 - A deterministic quantity typically given in milliradians

$$\delta f_{z} = m_{a,zx} f_{x} + m_{a,zy} f_{y} \qquad \delta \omega_{z} = m_{g,zx} \omega_{x} + m_{g,zy} \omega_{y}$$

$$\bullet \text{ Combining Misalignment & Scale Factor}$$

$$\delta \vec{f} = \begin{bmatrix} s_{a,x} & m_{a,xy} & m_{a,xz} \\ m_{a,yx} & s_{a,y} & m_{a,yz} \\ m_{a,zx} & m_{a,zy} & s_{a,z} \end{bmatrix} \begin{bmatrix} f_{x} \\ f_{y} \\ f_{z} \end{bmatrix} = M_{a} \vec{f}_{ib}^{b}$$

$$m_{y} \vec{f}_{ib} = M_{a} \vec{f}_{ib}^{b}$$

Inertial Sensor Error Sources

- Cross-Axis Response
 - Refers to the sensor output which occurs when the device is presented with a stimulus which is vectorially orthogonal to the sense axis

Misalignment and cross-axis response are often difficult to distinguish – Particularly during testing and calibration activities

- Other noise sources
 - Typically characterized as additive in nature
 - May have a compound form
 - White noise
 - » Gyros: White noise in rate \Rightarrow Angle random walk
 - » Accels: White noise in accel \Rightarrow Velocity random walk
 - Quantization noise
 - » May be due to LSB resolution in ADC's
 - Flicker noise
 - Colored noise

A more detailed discussion of noise will be given at a later date (25 March)

- Gyro Specific Errors
 - G-sensitivity
 - The gyro may be sensitive to acceleration
 - Primarily due to device mass assymetry
 - Mostly in Coriolis-based devices
 - G²-Sensitivity
 - Anisoelastic effects
 - Due to products of orthogonal forces

$$\delta \vec{\omega}_{ib}^b = G_g \vec{f}_{ib}^b$$

- Accelerometer Specific Errors
 - Axis Offset
 - The accel may be mounted at a leverarm distance from the "center" of the Inertial Measurement Unit (IMU)
 - Leads to an " $\omega^2 r$ " type effect

$$\delta f_x = \omega_y^2 \Delta x + \omega_z^2 \Delta x = \left(\omega_y^2 + \omega_z^2\right) \Delta x$$

Inertial Sensors Modeling Inertial Sensors

Accelerometer model

$$\tilde{f}_{ib}^{\,b} = \vec{f}_{ib}^{\,b} + \delta \vec{f}_{ib}^{\,b} = \vec{b}_a + (I + M_a) \vec{f}_{ib}^{\,b} + \vec{w}_a$$

• Gyro Model

$$\tilde{\boldsymbol{\omega}}_{ib}^{b} = \vec{\boldsymbol{\omega}}_{ib}^{b} + \delta \vec{\boldsymbol{\omega}}_{ib}^{b} = \vec{b}_{g} + \left(I + M_{g}\right) \vec{f}_{ib}^{b} + G_{g} \vec{f}_{ib}^{b} + \vec{w}_{g}$$

• Typically, each measures along a single sense axis requiring three of each to measure the 3-tupple vector

Current Accelerometer Application Areas

EE 570: Location and Navigation: Theory & Practice

Current Gyro Application Areas

EE 570: Location and Navigation: Theory & Practice

Different "Grades" of Inertial Sensors

Class	Position performance	Gyro technology	Accelerometer technology	Gyro bias	Acc bias
Strategic grade	1 nmi / 24 h	ESG, RLG, FOG	Servo accelerometer	< 0.005°/h	< 30 µg
Navigation grade	1 nmi / h	RLG, FOG	Servo accelerometer, Vibrating beam	0.01°/h	50 µg
Tactical grade	> 10 nmi / h	RLG, FOG	Servo accelerometer, Vibrating beam, MEMS	1°/h	1 mg
AHRS	NA	MEMS, RLG, FOG, Coriolis	MEMS	1 - 10°/h	1 mg
Control system	NA	Coriolis	MEMS	10 - 1000°/h	10 mg

Ref: INS Tutorial, Norwegian Space Centre, 2008.06.09

Cost as a function of Performance and technology

