INS Initialization

- How can we initialize the INS?
- Position and Velocity
- Typically from GPS or other position fixing source
- Attitude (Self-Alignment)

- Can be determined by a suitably accurate IMU if stationary
- For an ECI mechanization a star tracker is a common alternative
- Effectively, the IMU "sees" the earth rate vector and g-vector (i.e. acceleration due to gravity)
- This will not work for low-grade inertial sensors
" The gyros must have biases much less than earth rate

INS Initialization
 Attitude Initialization (Self-Alignment)

- The three gyros "see" earth rate

$$
\vec{\omega}_{i b}^{b}=C_{n}^{b} C_{e}^{n} \vec{\omega}_{i e}^{e}=C_{n}^{b} \vec{\omega}_{i e}^{n} \simeq C_{n}^{b}\left[\begin{array}{c}
\omega_{i e} \cos \left(L_{b}\right) \\
0 \\
-\omega_{i e} \sin \left(L_{b}\right)
\end{array}\right]
$$

- The three accels "see" the g-vector
- g is a function of lat \& lon

$$
\vec{f}_{i b}^{b}=C_{n}^{b} \vec{g}_{b}^{n} \simeq C_{n}^{b}\left[\begin{array}{l}
0 \\
0 \\
g
\end{array}\right]
$$

INS Initialization
 Attitude Initialization (Self-Alignment)

- Can generate a third vector equation

$$
\vec{f}_{i b}^{b} \times \vec{\omega}_{i b}^{b} \simeq C_{n}^{b}\left(\left[\begin{array}{l}
0 \\
0 \\
g
\end{array}\right] \times\left[\begin{array}{c}
\omega_{i e} \cos \left(L_{b}\right) \\
0 \\
-\omega_{i e} \sin \left(L_{b}\right)
\end{array}\right]\right)
$$

- Using measurements of the specific force $\left(\tilde{f}_{i b}^{b}\right)$, angular velocity $\left(\tilde{\tilde{\sigma}}_{i b}^{b}\right)$, and cross-product ($\left.\tilde{f}_{i b}^{b} \times \tilde{\tilde{\omega}}_{b}^{b}\right)$

$$
\begin{aligned}
& {\left[\begin{array}{lll}
\tilde{\tilde{f}}_{i b}^{b} & \tilde{\tilde{\omega}}_{i b}^{b} & \left(\tilde{\tilde{f}}_{i b}^{b} \times \tilde{\tilde{a}}_{i b}^{b}\right)
\end{array}\right]=C_{n}^{b}\left[\begin{array}{lll}
\bar{g}_{b}^{n} & \vec{\omega}_{i b}^{n} & \left(\vec{g}_{b}^{n} \times \bar{\omega}_{i b}^{n}\right)
\end{array}\right]} \\
& {[A]=C_{n}^{b}[B] \Rightarrow[A][B]^{-1}=C_{n}^{b} \Rightarrow C_{b}^{n}=\left([A][B]^{-1}\right)^{T}=[B]^{-T}[A]^{T}}
\end{aligned}
$$

INS Initialization
 Attitude Initialization (Self-Alignment)

- With some help from Mathematica ${ }^{\text {TM }}$
- This is often referred to as course-alignment
- The DCM can now be reduced to Euler angles, a quaternion, or other suitable orientation representations

$$
\begin{aligned}
C_{b}^{n} & =\left[\begin{array}{ccc}
\frac{\tan \left(L_{b}\right)}{g} & \frac{1}{\omega_{i e} \cos \left(L_{b}\right)} & 0 \\
0 & 0 & \frac{1}{g \omega_{i e} \cos \left(L_{b}\right)} \\
\frac{1}{g} & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
\tilde{\vec{f}}_{i b}^{b} & \tilde{\vec{\omega}}_{i b}^{b} & \left(\tilde{\vec{f}}_{i b}^{b} \times \tilde{\vec{\omega}}_{i b}^{b}\right)
\end{array}\right]^{T} \\
& =\left[\begin{array}{ccc}
\frac{\omega_{x}}{\omega_{i e} \cos \left(\theta_{\text {lat }}\right)}+\frac{f_{x} \tan \left(L_{b}\right)}{g} & \frac{\omega_{y}}{\omega_{i e} \cos \left(\theta_{\text {lat }}\right)}+\frac{f_{y} \tan \left(L_{b}\right)}{g} & \frac{\omega_{z}}{\omega_{i e} \cos \left(\theta_{\text {lat }}\right)}+\frac{f_{z} \tan \left(L_{b}\right)}{g} \\
\frac{\left(-f_{z} \omega_{y}+f_{y} \omega_{z}\right)}{g \omega_{i e} \cos \left(L_{b}\right)} & \frac{\left(f_{z} \omega_{x}-f_{x} \omega_{z}\right)}{g \omega_{i e} \cos \left(L_{b}\right)} & \frac{\left(-f_{y} \omega_{x}+f_{x} \omega_{y}\right)}{g \omega_{i e} \cos \left(L_{b}\right)} \\
\frac{f_{x}}{g} & \frac{f_{y}}{g} & \frac{f_{z}}{g}
\end{array}\right]
\end{aligned}
$$

INS Error Propagation

- Focus on errors due to deterministic error sources
- Sensor errors
- Biases, misalignment, scale factor, ...
- Noise contributors (ARW, VRW, ...) are also significant
- Initialization errors
- Imperfect initial position, velocity and attitude
- Mechanization equations introduce errors
- Can increase fidelity and/or update rates
- Gravity model

INS Error Propagation

- Define orientation error as
- Measured \times Truth ${ }^{-1}$ (DCM)

$$
\begin{aligned}
& \delta C_{\beta}^{\alpha}=\tilde{C}_{\beta}^{\alpha} C_{\alpha}^{\beta}=e^{\Omega_{\alpha \beta}^{\alpha} \alpha d}=e^{\left[\omega_{\alpha \beta}^{\alpha} \times\right] d t}=e^{\left[\delta \dot{\psi}_{\alpha \beta \beta}^{\alpha} \times\right]}=I+\left[\delta \vec{\psi}_{\alpha \beta}^{\alpha} \times\right]+\ldots \\
& \therefore\left[\delta \vec{\psi}_{\alpha \beta}^{\alpha} \times\right] \simeq \delta C_{\beta}^{\alpha}-I \quad \Rightarrow\left[\delta \dot{\vec{\psi}}_{\alpha \beta}^{\alpha} \times\right] \simeq \delta \dot{C}_{\beta}^{\alpha}
\end{aligned}
$$

- Define linear (velocity, pos, ...) errors as
- Measured - Truth

$$
\begin{aligned}
\delta \vec{v}_{\beta \alpha}^{\gamma} & =\tilde{\vec{v}}_{\beta \alpha}^{\gamma}-\vec{v}_{\beta \alpha}^{\gamma} \\
\delta \vec{\omega}_{i b}^{b} & =\tilde{\tilde{\omega}}_{i b}^{b}-\vec{\omega}_{i b}^{b} \simeq b_{g} \\
\delta \vec{f}_{i b}^{b} & =\tilde{\vec{f}}_{i b}^{b}-\vec{f}_{i b}^{b} \simeq b_{a}
\end{aligned}
$$

INS Error Propagation

- Want to build a state-space error model
- State vector

$$
\vec{x}=\left[\begin{array}{c}
\delta(\text { PVA }) \\
\text { Gyro / Accel Biases }
\end{array}\right]=\left[\begin{array}{c}
\delta \vec{v} \\
\delta \vec{r} \\
\vec{b}_{a} \\
\vec{b}_{g}
\end{array}\right]
$$

- This will allow us to model the system's error dynamics

INS Error Propagation

Case I: ECI Error Model

- Error model state vector
- Attitude Error
- Recall that: $\dot{C}_{b}^{i}=C_{b}^{i} \Omega_{i b}^{b}$

$$
\vec{x}=\left[\begin{array}{c}
\delta \vec{\psi}_{i b}^{i} \\
\delta \vec{v}_{i b}^{i} \\
\delta \vec{r}_{i b}^{i} \\
\vec{b}_{a} \\
\vec{b}_{g}
\end{array}\right]
$$

$$
\begin{aligned}
& \delta C_{b}^{i}=\tilde{C}_{b}^{i} C_{i}^{b} \Rightarrow \delta \dot{C}_{b}^{i}=\dot{\tilde{C}}_{b}^{i} C_{i}^{b}+\tilde{C}_{b}^{i} \dot{C}_{i}^{b} \\
& \delta \dot{C}_{b}^{i} \simeq\left[\delta \dot{\vec{\psi}}_{i b}^{i} \times\right]
\end{aligned}
$$

- Thus

$$
\dot{C}_{i}^{b}=C_{i}^{b} \Omega_{b i}^{i}
$$

$$
=\tilde{C}_{b}^{i}\left[\tilde{\Omega}_{i b}^{b}-\Omega_{i b}^{b}\right] C_{i}^{b}
$$

$$
=\tilde{C}_{b}^{i}\left[\vec{b}_{g} \times\right] C_{i}^{b} \simeq\left[C_{b}^{i} \vec{b}_{g} \times\right]
$$

$\therefore \delta \dot{\Psi}_{i b}^{i}=C_{i=0}^{C} C_{b}^{i} \vec{b}_{b}$

INS Error Propagation

Case I: ECI Error Model

- Velocity Error
- Recall that: $\overrightarrow{\mathrm{a}}_{i b}^{i}=\dot{\vec{v}}_{i b}^{i}=\vec{f}_{i b}^{i}-\vec{\gamma}_{i b}^{i}=C_{b}^{i} \vec{f}_{i b}^{b}-\vec{\gamma}_{i b}^{i}$

$$
\begin{aligned}
\delta \dot{\vec{v}}_{i b}^{i} & =\dot{\overrightarrow{\tilde{v}}}_{i b}^{i}-\dot{\vec{V}}_{i b}^{i} \\
& =\tilde{C}_{b}^{i} \tilde{\vec{f}}_{i b}^{b}-\tilde{\tilde{\gamma}}_{i b}^{i}-\left(C_{b}^{i} \vec{f}_{i b}^{b}-\vec{\gamma}_{i b}^{i}\right)=\tilde{C}_{b}^{i} \tilde{\vec{f}}_{i b}^{b}-C_{b}^{i} \vec{f}_{i b}^{b}-\left[\tilde{\tilde{\gamma}}_{i b}^{i}-\vec{\gamma}_{i b}^{i}\right]
\end{aligned}
$$

- Now, by adding zero

$$
\begin{aligned}
& \left.\tilde{C}_{b}^{i} \tilde{\vec{f}}_{i b}^{b}-C_{b}^{i} \vec{f}_{i b}^{b}+\left(C_{b}^{i} \tilde{\vec{f}}_{i b}^{b}-C_{b}^{i} \tilde{\overrightarrow{\tilde{f}}}_{i b}^{b}\right)=\left[{\widetilde{C_{b}^{b}}}_{b}^{i}-C_{b}^{i}\right] \tilde{\tilde{f}}_{i b}^{b}+C_{b}^{i} \overrightarrow{\tilde{f}}_{i b}^{b}-\vec{f}_{i b}^{b}\right] \\
& =\left[\delta C_{b}^{i} C_{b}^{i}-C_{b}^{i}\right]\left(\vec{f}_{i b}^{b}+b_{a}\right)+C_{b}^{i}\left[b_{a}^{-}\right] \delta C_{b}^{i}=\tilde{C}_{b}^{i} C_{i}^{b} \\
& \begin{array}{ll}
\simeq & \left.=\delta C_{b}^{i}-I\right] C_{b}^{i} \vec{f}_{i b}^{b}+C_{b}^{i} b_{a} \\
\simeq \delta \vec{\psi}_{i b}^{i} \times C_{b}^{i} \vec{f}_{i b}^{b}+C_{b}^{i} b_{a} & \delta C_{b}^{i} \simeq I+\left[\delta \vec{\psi}_{i b}^{i} \times\right]
\end{array}
\end{aligned}
$$

INS Error Propagation

Case I: ECI Error Model

- The remaining term
- Recall that:

$$
\vec{\gamma}_{i b}^{i} \approx \frac{\left(r_{e S}^{e}\left(L_{b}\right)\right)^{2}}{\left(r_{e S}^{e}\left(L_{b}\right)+h_{b}\right)^{2}} \vec{\gamma}_{0}^{i}\left(L_{b}\right)
$$

- Now, by ignoring gravitational variation w/ latitude and making additional simplifications

$$
\left[\tilde{\vec{\gamma}}_{i b}^{i}-\vec{\gamma}_{i b}^{i}\right] \simeq \frac{2 g_{0}}{r_{e S}^{e}}\left[\vec{r}_{i b}^{i}\left(\vec{r}_{i b}^{i}\right)^{T}\right] \frac{\delta \vec{r}_{i b}^{i}}{\left\|\vec{r}_{i b}^{i}\right\|}
$$

- We finally obtain

$$
\delta \dot{\vec{v}}_{i b}^{i}=-\left[C_{b}^{i} \vec{f}_{i b}^{b} \times\right] \delta \vec{\psi}_{i b}^{i}+C_{b}^{i} b_{a}+\frac{2 g_{0}}{\left\|\vec{r}_{i b}^{i}\right\| r_{e S}^{e}}\left[\vec{r}_{i b}^{i}\left(\vec{r}_{i b}^{i}\right)^{T}\right] \delta{\overrightarrow{r_{i b}^{i}}}_{i}
$$

INS Error Propagation

Case I: ECI Error Model

- Position Error
- Recalling that

$$
\dot{\vec{r}}_{i b}^{i}=\vec{v}_{i b}^{i} \Rightarrow \delta \dot{\vec{r}}_{i b}^{i}=\delta \vec{v}_{i b}^{i}
$$

- In Summary:

$$
\left[\begin{array}{c}
\delta \dot{\vec{\psi}}_{i b}^{i} \\
\delta \dot{\vec{v}}_{i b}^{i} \\
\delta \dot{\vec{r}}_{i b}^{i} \\
\overrightarrow{\vec{b}}_{a}^{i} \\
\dot{\vec{b}}_{g}
\end{array}\right]=\left[\begin{array}{ccccc}
0_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} & C_{b}^{i} \\
-\left[C_{b}^{i} \vec{f}_{i b}^{b} \times\right] & 0_{3 \times 3} & \frac{2 g_{0}}{\left\|\vec{r}_{i b}^{i}\right\| r_{e S}^{e}}\left[\vec{r}_{i b}^{i}\left(\vec{r}_{i b}^{i}\right)^{T}\right] & C_{b}^{i} & 0_{3 \times 3} \\
0_{3 \times 3} & I_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} \\
& & 0_{3 \times 15} & &
\end{array}\right]\left[\begin{array}{c}
\delta \vec{\psi}_{i b}^{i} \\
\delta \vec{v}_{b i}^{i} \\
\delta \vec{r}_{i b}^{i} \\
\vec{b}_{a} \\
\vec{b}_{g}
\end{array}\right]
$$

- This continuous time model can be converted to a discrete model

INS Error Propagation

Case II: ECEF Error Model

- Error model state vector
- Attitude Error
- Recall that: $\dot{C}_{b}^{e}=C_{b}^{e} \Omega_{e b}^{e}$
- Leads again to

$$
\left[\delta \dot{\vec{\psi}}_{e b}^{e} \times\right]=\tilde{C}_{b}^{e}\left[\tilde{\Omega}_{e b}^{b}-\Omega_{e b}^{b}\right] C_{e}^{b}
$$

- Thus

$$
\begin{aligned}
\delta \dot{\vec{\psi}}_{e b}^{e} & \simeq C_{b}^{e}\left[\tilde{\vec{\omega}}_{e b}^{b}-\vec{\omega}_{e b}^{b}\right] \\
& =C_{b}^{e}\left[\left(\tilde{\vec{\omega}}_{i b}^{b}-\tilde{C}_{e}^{b} \tilde{\vec{\omega}}_{i e}^{e}\right)-\left(\vec{\omega}_{i b}^{b}-C_{e}^{b} \vec{\omega}_{i e}^{e}\right)\right] \\
& =C_{b}^{e}\left(\overrightarrow{\tilde{\omega}}_{i b}^{b}-\vec{\omega}_{i b}^{b}-C_{e}^{b} \vec{\omega}_{i e}^{e}\right. \\
& \left.\simeq C_{b}^{e} \vec{b}_{g}+\left[I-C_{b}^{e} \tilde{C}_{e}^{b}\right) \vec{\omega}_{e b}^{e} \times\right] \vec{\omega}_{i e}^{e} \\
\therefore & \delta \dot{\vec{\psi}}_{e b}^{e} \simeq C_{b}^{e} \vec{b}_{g}-\left[\vec{\omega}_{i e}^{e} \times\right] \delta \vec{\psi}_{e b}^{e}
\end{aligned}
$$

INS Error Propagation

Case II: ECEF Error Model

- Velocity Error
- Recalling that $\dot{\vec{v}}_{e b}^{e}=\vec{f}_{i b}^{e}+\vec{g}_{b}^{e}-2 \Omega_{i e}^{i} \vec{v}_{e b}^{e}$

$$
=\vec{f}_{i b}^{e}-2 \Omega_{i e}^{i} \vec{v}_{e b}^{e}+\gamma_{i b}^{e}-\Omega_{i e}^{e} \Omega_{i e}^{e} \vec{r}_{e b}^{e}
$$

- Following the prior analysis

$$
\delta \dot{\vec{v}}_{e b}^{e}=-\left[C_{b}^{e} \vec{f}_{i b}^{b} \times\right] \delta \vec{\psi}_{e b}^{e}+C_{b}^{e} b_{a}-2 \Omega_{i e}^{i} \delta \vec{v}_{e b}^{e}+\frac{2 g_{0}}{\left\|\vec{r}_{e b}^{e}\right\| r_{e S}^{e}}\left[\vec{r}_{e b}^{e}\left(\vec{r}_{e b}^{e}\right)^{T}\right] \delta \vec{r}_{e b}^{e}
$$

INS Error Propagation
 Case II: ECEF Error Model

- Position Error
- Recalling that $\dot{\vec{r}}_{e b}^{e}=\vec{v}_{e b}^{e} \Rightarrow \delta \dot{\vec{r}}_{e b}^{e}=\delta \vec{v}_{e b}^{e}$
- In Summary:
- This continuous time model can be converted to a discrete model

