The Global Positioning System (GPS)

Friday 15 April 2011

The Global Positioning System Overview

- The GPS is a Space-Based Global Navigation Satellite System (GNSS)
 - Space segment (satellites)
 - Satellites launched from 1989 (first) to 1994 (24th)
 - Control segment (ground station(s))
 - Master control segment, alternate, and monitors
 - User segment (receivers)
 - Both military and civilian
- GPS modernization is underway
 - First satellite transmission occurred in 2005
 - Additional civilian and military channels
 - Improved performance and reliability

The Global Positioning System The Satellite Constellation

- Constellation of 24 satellites in 6 orbital planes
- Four satellites in each plane
- 20,200 km altitude at 55° inclination
 - Each satellite's orbital period is 12 hours
 - >6 satellites visible in each hemisphere

Courtesy of MATLAB™

Tutorial: www.trimble.com/gps/index.shtml

The Global Positioning System Multilateration - Intersection of Spheres

Only one point yields a "reasonable" soln

EE 570: Location and Navigation: Theory & Practice

slide 4 of 20

The Global Positioning System Multilateration - Intersection of Spheres

• Basic Idea

- Determine range to a given satellite via time-of-flight of an RF signal (*i.e.* speed of light)
- Requires very precise time bases
 - Receiver clock bias

The Global Positioning System Modulation Scheme

- Position is determined by the travel time of a signal from four or more satellites to the receiving antenna
 - Three satellites for X, Y, Z position, one satellite to solve for clock biases in the receiver

The Global Positioning System Modulation Scheme

- The GPS employs quadrature Binary Phase Shift Keying (BPSK) modulation at two frequencies (CDMA)
 - L1 = 1,575.42 Mhz
 - $\lambda 1 = 19 \text{ cm}$
 - L2 = 1,227.6 Mhz
 - λ1 = 24 cm
- Two main PRN codes
 - C/A: Course acquisition
 - 10-bit 1 MHz
 - P: Precise
 - 40 bit 10 MHz
 - Encrypted P(Y) code

The Global Positioning System Modulation Scheme

Quadrature BPSK modulation

Ref: JNC 2010 GPS 101 Short Course by Jacob Campbell

The Global Positioning System Signal Processing

- Code and Carrier Phase Processing
 - Code used to determine user's gross position
 - Carrier phase difference can be used to gain more accurate position
 - Timing of signals must be known to within one carrier cycle

GPS Measurement Equations Pseudorange All measurements Sati (x1)y1 in ECEF coordinates GPS receiver (x,y,z) $\rho_i = \sqrt{(x_i - x)^2 + (y_i - y)^2 + (z_i - z)^2}$ Sat₃ $\rho_i^2 = x_i^2 + x^2 - 2x_ix + y_i^2 + y^2$ $-2y_{i}y + z_{i}^{2} + z^{2} - 2z_{i}z$ $\rho_i^2 - (x_i^2 + y_i^2 + z_i^2) - (x^2 + y^2 + z^2) = -2x_i x - 2y_i y - 2z_i z$ $\begin{bmatrix} \rho_1^2 - (x_1^2 + y_1^2 + z_1^2) - r_e \\ \rho_2^2 - (x_2^2 + y_2^2 + z_2^2) - r_e \\ \vdots \\ \rho_n^2 - (x_n^2 + y_n^2 + z_n^2) - r_e \end{bmatrix} \approx \begin{bmatrix} -2x_1 & -2y_1 & -2z_1 \\ -2x_2 & -2y_2 & -2z_2 \\ \vdots \\ -2x_n & -2y_n & -2z_n \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ ρ - pseudorange r_{ρ} - Earth's radius

15 April 2011

GPS Measurement Equations Pseudorange

• A more realistic model is

$$\rho_{i} = \sqrt{(x_{i} - x)^{2} + (y_{i} - y)^{2} + (z_{i} - z)^{2}} + c\Delta T + n_{i}$$

• Can perturb this model to form

$$\begin{bmatrix} \Delta \rho_1 \\ \Delta \rho_2 \\ \vdots \\ \Delta \rho_n \end{bmatrix} = \begin{bmatrix} & 1 \\ -1 \\ -1 \\ -1 \\ -1 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \\ -1 \end{bmatrix} + \vec{n}$$

• This can be solved via least-squares or Kalman filter

GPS Measurement Equations Sources Of Error (GDOP)

large area of uncertainty

- Geometry of satellite constellation wrt to receiver
- Good GDOP occurs when
 - Satellites just above the horizon spaced and one satellite directly overhead
- Bad GDOP when pseodurange vectors are almost linearly dependent \

GPS Measurement Equations Sources Of Error

- Selective Availability
 - Intentional errors in PRN
 - Discontinued in 5/1/2000
- Atmospheric Effects
 - Ionospheric
 - Tropospheric
- Multipath
- Ephemeris Error (satellite position data)
- Satellite Clock Error
- Receiver Clock Error

GPS Measurement Equations Error Mitigation Techniques

- Carriers at L1 and L2 frequencies
 - Ionospheric error is frequency dependent so using two frequencies helps to limit error
- Differential GPS
 - Post-Process user measurements using measured error values
- Space Based Augmentation Systems(SBAS)
 - Examples are U.S. Wide Area Augmentation System (WAAS), European Geostationary Navigational Overlay Service (EGNOS)
 - SBAS provides atmospheric, ephemeris and satellite clock error correction values in real time

GPS Measurement Equations Error Mitigation Techniques - Differential GPS

- Uses a GPS receiver at a fixed, surveyed location to measure error in pseudorange signals from satellites
 - Pseudorange error for each satellite is subtracted from mobile receiver before calculating position (typically post processed)

GPS Measurement Equations Error Mitigation Techniques - WAAS/EGNOS

- Provide corrections based on user position
- Assumes atmospheric error is locally correlated

GPS Measurement Equations Sources Of Error

Single satellite pseudorange measurement

 $\rho_{measured} = \rho_{true} + e_{SA} + e_{ionospheric} + e_{tropospheric} + e_{ephemeris} + e_{satellite \ clock} + e_{receiver \ clock} + e_{multipath}$

GPS error summary

Error Source	Bias	Random	Total	DGPS	Error Source	Bias	Random	Total	DGPS
Ephemeris	2.1	0	2.1	0	Ephemeris	2.1	0	2.1	0
Satellite Clock	1	0.7	2.1	0	Satellite Clock	2.0	0.7	2.1	0
Ionosphere	4	0.5	4	0.4	Ionosphere	1.0	0.5	1.2	0.1
Troposphere	0.5	0.5	0.7	0.2	Troposphere	1.0	1.0	1.4	1.4
Multipath	1	1	1.4	1.4	Multipath	1	1	1.4	1.4
Receiver measurement	0.5	0.2	0.5	0.5	Receiver measurement	0.5	0.2	0.5	0.5
User Equiv Range Error	5.1	1.4	5.3	1.6	User Equiv Range Error	3.3	1.5	3.6	1.5
Vertical 1 σ error VDOP			12.8	3.9	Vertical 1 σ error VDOP			8.6	3.7
Horizontal 1 σ error HDOP 2.0			10.2	3.1	Horizontal 1 σ error HDOP 2.0			6.6	3.0

L1 C/A (with S/A off)

PPS Dual Frequency P/Y Code

Ref: Navigation System Design by Eduardo Nebot, Centre of Excellence for Autonomous Systems, The University of Sydney

GPS Accuracy - PPS

PPS	CEP/50 %	DRMS	2DRMS/95%	Selective Availability on
Position				50
Horizontal	8 m	10.5 m	21 m	
Vertical	9 m	14 m	28 m	The second se
Spherical	16 m	18 m	36 m	-50
Velocity				-100 .50 0 50
Any Axis	0.07 m/sec	0.1 m/sec	0.2 m/sec	
Time				
GPS	17 nsec	26 nsec	52 nsec	

15 April 2011

EE 570: Location and Navigation: Theory & Practice

slide 18 of 20

GPS Future

	II/IIA
Number SV's	28
First Launch	1989
Satellite Weight	900
(Kg)	
Power (W)	1,100
Design Life	7.5
(Years)	
Unit Cost (\$M)	43
In Use (2010)	11
	<u>Ref</u> : J
15 April 2011	

GPS References

- References:
 - A compact <u>introduction to GPS</u> by The U. of Kentucky
 - www.ca.uky.edu/agc/pubs/aen/aen88/aen88.pdf
 - Principles and Practice of GPS Surveying (UNSW)
 - www.gmat.unsw.edu.au/snap/gps/gps_survey/principles_gps.htm
 - The Global Positioning Systems (GPS) Resource Library
 - <u>http://www.gpsy.com/gpsinfo/</u>