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Objective

Sequentially estimate on-line the states of a system asitggs over time using observations that
are corrupted with noise.

1 Problem Statement

Given State-Space Equations

X = fi(Rie—1, Whe—1) (1)

Z = hy (R, W) 2

whereX is (n x 1) state vector at timg, fx andhy are possibly non-linear functidi : R" x "™

R" and hy : R™ x RV — RM, respectively, andiy, andVy i.i.d state noise. The state process is
Markov chain, i.e.p(X[X1,...,X-1) = p(X|*-1) and the distribution o conditional on the state
X is independent of previous state and measurement valee®y(%|Xy.k, Zok-1) = P(Z|%)

Objective
Probabilistically estimat& using previous measuremehty. In other words, construct the pdf
p(s(’k‘_z'lzk)-

Optimal MM SE Estimate
E{IRe— 32} = [ IR 2p(iizas) 6% ©

in other words find the conditional mean

Re= Bl = [ %P2z @)




2 Recursive Bayesian Estimation

Prediction Stage

P(X|Z1k-1) = / PR X—1) P(Ru—1/Z1:k-1) d¥e_1 (5)

p(X«|*«—1) is defined using the state equation, auf#_1|Z1.k—1) is assumed available from previous
iteration.

Update Stage
Using Bayes’ Rule
. P(Z[X) P(R[Z1k-1)
P(X[Z1k) = (6)
P(Z([Z1k-1)

wherep(X«|Z1.x) is the posterior distributiorp(Z|%x) is the likelihood defined by the measurement
equation and the statistics of the measurement nqiS&|Z;.k_1) is prior distribution defined by
the state equation and the statistics of the state noisep@f¥1.x 1) is the evidence defined as
p(X«|Z1:x_1)d% and depends on the likelihood functipiiz, %)

The following is useful in deriving the above equation:

p(YIX) p(X)

P(Xy) = W( (7)
p(XY) = | p(x.2y)az ®)
Epxy19(X)} = y p(X|y)g(X)dx )

Limitations

1. Need to keep track of all previous states.
2. Generally can’'t be determined analytically.

3 Kalman Filter

Assumptions
e Wy andvy are drawn from a Gaussian distribution, uncorrelated har@mean and statistically

independent.

Qk i=k
E{Wi } = 10

R i=k
E{WV } = 11
{ kVi } {0 i £k (11)
E{W& } = {o Vi k (12)

Assumptions
o fi andhy are both linear, e.g., the state-space system equationbenagitten as

X = @y-1 X1+ Wk 1 (13)
Vie = Hi R+ Vk (14)

where®,_; is (nx n) transition matrix relating_1 to X, Hy is (mx n) matrix provides noiseless
connection between measurement and state vectors.




pdf notation

P(Xk-1/Z1k-1) = A (K- 1M 1jk-1, Pre1jk-1)
P(R[Z1k-1) = A (R Migk—1, Pig—1)
P(X[Z1:k) = A (R Mgk Pk )

where
Migk—1 = Pr—1My_ 11

Puk-1 = Q-1+ @i 1Pi 1 1Pf_1
My = Migi—1 + Ki(Z — HiMyge-1)
Pik = Pk—1 — KkHkPik-1

whereP,_y_1 is a priori error covariance{ (X 11— X-1) X-1k-1—X1)" }), diagonal terms
are the variances in the state estimates off-diagonal shawlation between the errors in the differ-

ent statesPy is posterior error covarianc®({ (Xqk — %) Xk — %) T }).
State-Space Equations
Xigk-1 = P 1%k 1jk-1
Pik-1= Qu-1+ Pr-1P_ 1k 1Pg_1
Xk = Rgk-1+ K (Zc—Hidkige-1)

Pik = Pik-1(1 — KkHkPyk-1)

whereK is (n x m) Kalman gain, andz — Hkﬁk‘k,l) is the measurement innovation.

Kalman Gain

Kk = Pk-1Hg ( HiPqk_1HE + Ry )t

Kalman filter data flow

Initial estimate &y andPg)

!

Compute Kalman gain
_ T T -1
Kic = Pyjk—1Hk (HkPyk-1HK +Ri)

Project ahead Undat imate with st
% —®d, 1% pdate estimate with measurem
k-1 = Pk 1% 1jk—1 o % 2
! ! T Xk = k-1 K (&~ Hick—1)

Pijk—1 = Q-1+ Pk—1Pk—1k-1Pk_1

k=k+1

Update error covariance
Piik = Pjk—1 ~ KkHkPijk-1
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Observability
The system is observable if the observability matrix

H(k—n+1)
H(k—n—2)®(k—n+1)
(k) = . (27)

H(K)®(k—1)...®(K—n+1)

wheren is the number of states, has a ranknofThe rank of& is a binary indicator and doewt
provide a measure of how close the system is to being undidservhence, is prone to numerical
ill-conditioning.

A Better Observability Measure
In addition to the computation of the rank &f(k), compute the Singular Value Decomposition
(SVD) of (k) as
0 =UxVv* (28)

and observe the diagonal values of the maliixUsing this approach it is possible to monitor the
variations in the system observability due to changes itesyslynamics.

Remarks

Kalman filter is optimal under the aforementioned assumgtio

and it is also an unbiased and minimum variance estimate.

If the Gaussian assumptions is not true, Kalman filter isdaland not minimum variance.
Observability is dynamics dependent.

The error covariance update may be implemented usindpdeph formwhich provides a more
stable solution due to the guaranteed symmetry.

Pik = (1 — KiHi) Pigi_1 (1 = KiHi) T+ KRR (29)

System Model

X(t) = F()X(t) + G(t)W(t) (30)
To obtain the state vector estimaig)

E{%()} = 2/(1) = FOR() (31)

Solving the above equation over the interval 1s,t
2(t) = el FOI )34 _ ) (32)
whereFy_; is the average df at timest andt — Ts.

System Model Discretization
As shown in the Kalman filter equations the state vector egérs given by

k-1 = Pk—1X_1jk—1

;%d)

Therefore,

O =1 x| +F T (33)

whereFy_; is the average df at timest andt — tg, and first order approximation is used.
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Discrete Covariance Matrix Qg
The solution to 80) is

1
Yy = P 1X—1+ 1M, 1 W(n)dn (34)

t—Ts

whereGy_; is the average db at timest andt — 7s. Now let’s look at the error covariance matrix

Pik-1 = B{ (Rig—1 — %) K1 — %) " } (35)
where .
Kigk—1 — % = Pre-1(Re- 11— %) — /t_r e1t=MG_1w(n)dn (36)

Discrete Covariance Matrix Qk (cont.)
Since the state estimate errors and the system fgigeare uncorrelated

Pik-1 =Pk-1Pk_1k-1Pg_1+
t
JE{ / eFkl(tmekNv(n)wT(OGIlth“Odndz}
t—Ts
=@ 1P 1 1Pp_ 1+ (37)

t
=M, JE{W(n)W" (I)VG]_ec1t-Odndg

. k-1

=B 1P 11 Pp 1+ Qs

Discrete Covariance Matrix Qy (cont.)
Assuming white noise, small time step,is constant over the integration period, and the trape-
zoidal integration

=

Qo1 ™ = [®r-1Gk-1Q(t—1)Gr_1Pr_1 + G 1Q(t-1)G_q] Ts (38)

2
where

E{W(n)#"({)} =Q(n)é(n—1{) (39)

4 Extended Kalman Filter (EKF)

Linearized System

Fe=—"51 . Hie=—55 (40)
X=Xilk—1 X=Xk-1
where
% % % %
= X X; - X X
oHRX) _ | ot of oh(®) _ |ony om (41)
as(a - X1 %o ' 05'( - 0X1 (7)(2
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5 Example

First Order Markov Noise
State Equation
1
n(t) = —?n(t) +w(t)

C

Autocorrelation Function

E{n(t) (n(t +1)} = 0% 11/T

where
E{w(t)w(t+1)} =Q(t)d(t—1)
Q=22

andT. is the correlation time.

Discrete First Order Markov Noise

State Equation
1
N =€ Te™n_q+ W1

System Covariance Matrix

Autocorrelation of 1st order Markov

Small Correlation Time T, = 0.01

n()
)

Time (sec)

Measured Actual

Estimated
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Larger Correlation Time T, = 0.1

== SR

e priee ++ﬁ:+
=L

n(t)
o

o
o
N
o
IS
o
=3
)
@
=

Time (sec)
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6 Other Solutions

Unscented Kalman Filter (UKF)

Propagates carefully chosen sample points (using unstérgesformation) through the true

non-linear system, and therefore captures the posterianmed covariance accurately to the second
order.

Particle Filter

A Monte Carlo based method. It allows for a complete repriegiem of the state distribution
function. Unlike EKF and UKF, particle filters do not requttee Gaussian assumptions.

7 References

Bayesian Filtering: From Kalman Filters to Particle Fisteand Beyongdby Zhe Chen

.27

.28

.29

.30



http://www.google.com/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.107.7415%26rep%3Drep1%26type%3Dpdf&rct=j&q=Bayesian%20Filtering%3A%20From%20Kalman%20Filters%20to%20%20%20%20%20%20%20%20Particle%20Filters%2C%20and%20Beyond&ei=eDSjTfznC-LgiAKnzPWMAw&usg=AFQjCNFwDzEInpHmNuBMIeFnKCp6ZhbSow&cad=rja

	Problem Statement
	Recursive Bayesian Estimation
	Kalman Filter
	Extended Kalman Filter (EKF)
	Example
	Other Solutions
	References

