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Objective

Sequentially estimate on-line the states of a system as it changes over time using observations that
are corrupted with noise.
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1 Problem Statement

Given State-Space Equations

~xk = fk(~xk−1,~wk−1) (1)

~zk = hk(~xk,~vk) (2)

where~xk is (n×1) state vector at timek, fk andhk are possibly non-linear functionfk :R
n ×R

nw 7→
R

n and hk : Rm ×R
nv 7→ R

m, respectively, and~wk and~vk i.i.d state noise. The state process is
Markov chain, i.e.,p(~xk|~x1, . . . ,~xk−1) = p(~xk|~xk−1) and the distribution of~zk conditional on the state
~xk is independent of previous state and measurement values, i.e., p(~zk|~x1:k,~z1:k−1) = p(~zk|~xk) .3

Objective

Probabilistically estimate~xk using previous measurement~z1:k. In other words, construct the pdf
p(~xk|~z1:k).

Optimal MMSE Estimate

E{‖~xk −~̂xk‖
2}=

∫

‖~xk −~̂xk‖
2p(~xk|~z1:k)d~xk (3)

in other words find the conditional mean

~̂xk = E{~xk|~z1:k}=
∫

~xk p(~xk|~z1:k)d~xk (4)
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2 Recursive Bayesian Estimation

Prediction Stage

p(~xk|~z1:k−1) =
∫

p(~xk|~xk−1) p(~xk−1|~z1:k−1) d~xk−1 (5)

p(~xk|~xk−1) is defined using the state equation, andp(~xk−1|~z1:k−1) is assumed available from previous
iteration. .5

Update Stage
Using Bayes’ Rule

p(~xk|~z1:k) =
p(~zk|~xk) p(~xk|~z1:k−1)

p(~zk|~z1:k−1)
(6)

wherep(~xk|~z1:k) is the posterior distribution,p(~zk|~xk) is the likelihood defined by the measurement
equation and the statistics of the measurement noise,p(~xk|~z1:k−1) is prior distribution defined by
the state equation and the statistics of the state noise, andp(~zk|~z1:k−1) is the evidence defined as
p(~xk|~z1:k−1)d~xk and depends on the likelihood functionp(~zk|~xk)

The following is useful in deriving the above equation:

p(~x|~y) =
p(~y|~x)p(~x)

∫

X p(~y|~x)p(~x)d~x
(7)

p(~x|~y) =
∫

Z
p(~x,~z|~y)d~z (8)

Ep(~x|~y){g(~x)}=
∫

X
p(~x|~y)g(~x)d~x (9)
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Limitations

1. Need to keep track of all previous states.
2. Generally can’t be determined analytically.
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3 Kalman Filter

Assumptions

• ~wk and~vk are drawn from a Gaussian distribution, uncorrelated have zero mean and statistically
independent.

E{~wk~w
T
i }=

{

Qk i = k

0 i 6= k
(10)

E{~vk~v
T
i }=

{

Rk i = k

0 i 6= k
(11)

E{~wk~v
T
i }=

{

0 ∀i,k (12)
.8

Assumptions

• fk andhk are both linear, e.g., the state-space system equations maybe written as

~xk = Φk−1~xk−1+~wk−1 (13)

~yk = Hk ~xk +~vk (14)

whereΦk−1 is (n×n) transition matrix relating~xk−1 to~xk, Hk is (m×n) matrix provides noiseless
connection between measurement and state vectors. .9
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pdf notation

p(~xk−1|~z1:k−1) = N (~xk−1;~mk−1|k−1, Pk−1|k−1 ) (15)

p(~xk|~z1:k−1) = N (~xk;~mk|k−1,Pk|k−1) (16)

p(~xk|~z1:k) = N (~xk;~mk|k, Pk|k ) (17)

where
~mk|k−1 = Φk−1~mk−1|k−1 (18)

Pk|k−1 = Qk−1+Φk−1Pk−1|k−1Φ
T
k−1 (19)

~mk|k = ~mk|k−1+Kk(~zk −Hk~mk|k−1) (20)

Pk|k = Pk|k−1−KkHkPk|k−1 (21)

wherePk−1|k−1 is a priori error covariance (E{(~̂xk−1|k−1−~xk−1)(~̂xk−1|k−1−~xk−1)
T}), diagonal terms

are the variances in the state estimates off-diagonal show correlation between the errors in the differ-
ent states,Pk|k is posterior error covariance (E{(~̂xk|k −~xk)(~̂xk|k −~xk)

T}). .10

State-Space Equations

~̂xk|k−1 = Φk−1~̂xk−1|k−1 (22)

Pk|k−1 = Qk−1+Φk−1Pk−1|k−1Φ
T
k−1 (23)

~̂xk|k =~̂xk|k−1+ Kk (~zk −Hk~̂xk|k−1) (24)

Pk|k = Pk|k−1(I−KkHkPk|k−1) (25)

whereKk is (n×m) Kalman gain, and(~zk −Hk~̂xk|k−1) is the measurement innovation. .11

Kalman Gain

Kk = Pk|k−1HT
k ( HkPk|k−1HT

k +Rk )−1 (26)
.12

Kalman filter data flow
Initial estimate (̂~x0 andP0)

Compute Kalman gain
Kk = Pk|k−1HT

k (HkPk|k−1HT
k +Rk )

−1

Update estimate with measurement~zk
~̂xk|k =~̂xk|k−1+Kk (~zk −Hk~̂xk|k−1)

Update error covariance
Pk|k = Pk|k−1−KkHkPk|k−1

Project ahead
~̂xk|k−1 = Φk−1~̂xk−1|k−1

Pk|k−1 = Qk−1+Φk−1Pk−1|k−1Φ
T
k−1

k = k+1

.13
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Observability
The system is observable if the observability matrix

O(k) =











H(k−n+1)
H(k−n−2)Φ(k−n+1)

...
H(k)Φ(k−1) . . .Φ(k−n+1)











(27)

wheren is the number of states, has a rank ofn. The rank ofO is a binary indicator and doesnot
provide a measure of how close the system is to being unobservable, hence, is prone to numerical
ill-conditioning. .14

A Better Observability Measure
In addition to the computation of the rank ofO(k), compute the Singular Value Decomposition

(SVD) of O(k) as
O =UΣV ∗ (28)

and observe the diagonal values of the matrixΣ. Using this approach it is possible to monitor the
variations in the system observability due to changes in system dynamics. .15

Remarks

• Kalman filter is optimal under the aforementioned assumptions,
• and it is also an unbiased and minimum variance estimate.
• If the Gaussian assumptions is not true, Kalman filter is biased and not minimum variance.
• Observability is dynamics dependent.
• The error covariance update may be implemented using theJoseph form which provides a more

stable solution due to the guaranteed symmetry.

Pk|k = (I −KkHk)Pk|k−1 (I −KkHk)
T +KkRkKT

k (29)
.16

System Model

~̇x(t) = F(t)~x(t)+G(t)~w(t) (30)

To obtain the state vector estimate~̂x(t)

E{~̇x(t)}=
∂
∂ t
~̂x(t) = F(t)~̂x(t) (31)

Solving the above equation over the intervalt − τs,t

~̂x(t) = e(
∫ t
t−τs F(t ′)dt ′)

~̂x(t − τs) (32)

whereFk−1 is the average ofF at timest andt − τs. .17

System Model Discretization
As shown in the Kalman filter equations the state vector estimate is given by

~̂xk|k−1 = Φk−1~̂xk−1|k−1

Therefore,

Φk−1 = eFk−1τs ≈ I+Fk−1τs (33)

whereFk−1 is the average ofF at timest andt − τs, and first order approximation is used. .18
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Discrete Covariance Matrix Qk

The solution to (30) is

~xk = Φk−1~xk−1+
∫ t

t−τs

eFk−1(t−η)Gk−1~w(η)dη (34)

whereGk−1 is the average ofG at timest andt − τs. Now let’s look at the error covariance matrix

Pk|k−1 = E{(~̂xk|k−1−~xk)(~̂xk|k−1−~xk)
T} (35)

where

~̂xk|k−1−~xk = Φk−1(~̂xk−1|k−1−~xk)−
∫ t

t−τs

eFk−1(t−η)Gk−1~w(η)dη (36)

.19

Discrete Covariance Matrix Qk (cont.)
Since the state estimate errors and the system noise~w(t) are uncorrelated

Pk|k−1 =Φk−1Pk−1|k−1Φ
T
k−1+

E

{

∫∫ t

t−τs

eFk−1(t−η)Gk−1~w(η)~wT (ζ )GT
k−1eFT

k−1(t−ζ )dηdζ
}

=Φk−1Pk−1|k−1Φ
T
k−1+

∫∫ t

t−τs

eFk−1(t−η)Gk−1E{~w(η)~wT (ζ )}GT
k−1eFT

k−1(t−ζ )dηdζ

=Φk−1Pk−1|k−1Φ
T
k−1+Qk−1

(37)
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Discrete Covariance Matrix Qk (cont.)
Assuming white noise, small time step,G is constant over the integration period, and the trape-

zoidal integration

Qk−1 ≈
1
2

[

Φk−1Gk−1Q(tk−1)G
T
k−1Φ

T
k−1+Gk−1Q(tk−1)G

T
k−1

]

τs (38)

where
E{~w(η)~wT (ζ )}= Q(η)δ (η −ζ ) (39)

.21

4 Extended Kalman Filter (EKF)

Linearized System

Fk =
∂ f(~x)

∂~x

∣

∣

∣

∣

~x=~̂xk|k−1

, Hk =
∂h(~x)

∂~x

∣

∣

∣

∣

~x=~̂xk|k−1

(40)

where

∂ f(~x)
∂~x

=









∂ f1
∂x1

∂ f1
∂x2

· · ·
∂ f2
∂x1

∂ f2
∂x2

· · ·
...

. ..
...









,
∂h(~x)

∂~x
=









∂h1
∂x1

∂h1
∂x2

· · ·
∂h2
∂x1

∂h2
∂x2

· · ·
...

. . .
...









(41)
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5 Example

First Order Markov Noise

State Equation

ṅ(t) = −
1
Tc

n(t)+w(t) (42)

Autocorrelation Function
E{n(t)(n(t + τ)}= σ2e−|τ |/Tc (43)

where
E{w(t)w(t + τ)}= Q(t)δ (t − τ) (44)

Q(t) =
2σ2

Tc
(45)

andTc is the correlation time. .23

Discrete First Order Markov Noise

State Equation

nk = e−
1

Tc
τsnk−1+wk−1 (46)

System Covariance Matrix

Q = σ2[1− e−
2

Tc
τs ] (47)

.24

Autocorrelation of 1st order Markov .25

Small Correlation Time Tc = 0.01

τ

Rn(τ)

-3

-2

-1
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1

2

3

0 0.2 0.4 0.6 0.8 1

n(
t)

Time (sec)

Measured Actual Estimated
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Larger Correlation Time Tc = 0.1

τ

Rn(τ)

-3

-2

-1

0

1

2

3

0 0.2 0.4 0.6 0.8 1

n(
t)

Time (sec)

Measured Actual Estimated
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6 Other Solutions

Unscented Kalman Filter (UKF)
Propagates carefully chosen sample points (using unscented transformation) through the true

non-linear system, and therefore captures the posterior mean and covariance accurately to the second
order. .28

Particle Filter
A Monte Carlo based method. It allows for a complete representation of the state distribution

function. Unlike EKF and UKF, particle filters do not requirethe Gaussian assumptions. .29
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