EE 570: Location and Navigation

On-Line Bayesian Tracking

Aly EI-Osery

Electrical Engineering Department, New Mexico Tech
Socorro, New Mexico, USA

April 11, 2011

Aly El-Osery (NMT) EE 570: Location and Navigation April 11, 2011 1/30



I —
Objective

Sequentially estimate on-line the states of a system as it changes over
time using observations that are corrupted with noise.
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Problem Statement

Given State-Space Equations

Xk =f(Xx—1,Wg_1) (1)

Zy = hg(Xk, Vi) (2)
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Problem Statement

Given State-Space Equations

(n x 1) state vector at time k

= fi(Xk—1, Wk_1) (1)

= hy (X, Vi) (2)

(m x 1) measurement vector at time k
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Problem Statement

Given State-Space Equations
Possibly non-linear function,
fk:f)‘{”xi)finw — R"

Xk Xk—1,Wk_1) (1)

Zy (Xk. V) 2)

Possibly non-linear function,
hy :RM x RV — RM
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Problem Statement

Given State-Space Equations

i.i.d state noise

Xk = fe(K—2.Wi1) (1)

Zk = hk(%k

) (2)

i.i.d measurement noise
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Problem Statement

Given State-Space Equations

Xk =f(Xx—1,Wg_1) (1)

Zy = hg(Xk, Vi) (2)

The state process is Markov chain, i.e.,

P(Xk|X1,...,Xk_1) = p(Xk|Xk_1) and the distribution of Z, conditional
on the state X is independent of previous state and measurement
values, i.e., p(Zx|X1x,Z1k—-1) = P(Zk|Xk)
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Objective

Probabilistically estimate X\ using previous measurement Z .. In
other words, construct the pdf p(Xx|Z1.x)-
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Problem Statement

Objective

Probabilistically estimate X\ using previous measurement Z .. In
other words, construct the pdf p(Xx|Z1.x)-

Optimal MMSE Estimate
E{IRk =%k} = [ 1% = X2 (Xi Zai)dR ©)

in other words find the conditional mean

Ric = E{RulZau} = [ Rp(RilZax)dRi @
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______________Recusive Bayesian Estimation |
Prediction Stage

—

p(RlZ1-1) = [ PRlKict) PR-alfris) dXics  (8)
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Prediction Stage

p(RlZ1k-1) = [ @Rk 1) PRk 1l 1) dXis  (8)

defined using the state equation
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Prediction Stage

PRlZ1k-1) = [ PRk 1) Bk 1fZre D dXin  (6)

Assumed available from previous iteration
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Update Stage

Using Bayes’ Rule

o P(Zk[Xk) P(Xk|Z1xk-1)
P(Xk|Z1k) = — (6)
P(Zk|Z1:k-1)
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Update Stage

Using Bayes’ Rule

P(Zk[Xk) P(Xk|Z1xk-1)
QK71 = ®

P(Zk|Z1k-1)

posterior
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Update Stage

Using Bayes’ Rule

P(Zk|Xk) P(Xk|Z1k-1)

P(Xk|Z1k) = = (6)
<—p(zk’21:k—l)

likelihood: defined by the measurement equation
and the statistics of the measurement noise V
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Update Stage

Using Bayes’ Rule

P(Zk|Xk) (P(Xk|Z1:x-1)
p(Xk|Z1k) = r— (6)

p(zk!zl;k—l—)>

prior: defined by the state equation
and the statistics of the state noise Wy _1
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Update Stage

Using Bayes’ Rule

. P(Zk[Xk) P(Xk|Z1xk-1)
P(Xk|Z1k) = — (6)
P(Zk|Z1:k-1)

evidence = [ p(Zx Xk )p(Xk|Z1x—1)dXk
and depends on the likelihood function p(Z|Xk)
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Recursive Bayesian Estimation

Limitations

© Need to keep track of all previous states.
© Generally can't be determined analytically.
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Kalman Filter

Assumptions

@ W, and V are drawn from a Gaussian distribution, uncorrelated
have zero mean and statistically independent.

JE{wWF}={§k ) )
. i =k

E{ kv?}:{gk o ®)

E{W, ¥} = {o Vi k )
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Kalman Filter

Assumptions

@ fy and hy are both linear, e.g., the state-space system equations
may be written as

Xk = ®Pr_q X—1 +Wy_1 (10)

k = Hi Xk + Vi (11)

<t
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Kalman Filter

Assumptions

@ fy and hy are both linear, e.g., the state-space system equations
may be written as

Xk = Xk—1+Wy_1 (10)
Yk = Hik Xk + Vi (11)

(n x n) transition matrix relating X _1 to Xy
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Kalman Filter

Assumptions

@ fy and hy are both linear, e.g., the state-space system equations
may be written as

Xk = ®Pr_q X—1 +Wy_1 (10)

K = k + Vi (11)

<t

X ix provides noi S i
m x n) matrix provides noiseless connection between
measurement and state vectors
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Kalman Filter

pdf notation

P(Xk-1/Z1k—1) = N (Xk—1: My_1j—1, Pi—1jk—1) (12)
P(Xkl|Z1k-1) = N (X Mik—1, Pijk—1) (13)
P(Xk|Z1x) = N (Xi; My, P ) (14)
where
Migk—1 = Pk-1Mi_1jk—1 (15)
Pijk—1 = Q-1+ Pr—1Px_1-1Px_1 (16)
My = Mygr—1 + K (Zk — HeMye-1) a7
Prik = Pijk—1 — KkHk P k-1 (18)
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pdf notation
a priori error covariance (E{(ik—l\k—l - ik—l)(ik—l ket — Xk-1)TH.

Diagonal terms are the variances in the state estimates
off-diagonal show correlation between the errors in the different states

P(Xk-1|Z1:k-1) :N(%k—l;mk—l\k—l (12)

P(Xkl|Z1k-1) = N (X Mik—1, Pijk—1) (13)
P(Xk|Z1x) = N (Xi; My, P ) (14)
where
Migk—1 = Pk-1Mi_1jk—1 (15)
Pijk—1 = Q-1+ Pr—1Px_1-1Px_1 (16)
My = Mygr—1 + K (Zk — HeMye-1) a7
Prik = Pijk—1 — KkHk P k-1 (18)
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Kalman Filter

pdf notation

P(Xk-11Z1k-1) = N (Xk-1; M_1jk—1, Pr—1jk-1) (12)
P(Xkl|Z1k-1) = N (X Mik—1, Pijk—1) (13)
P(Xk|Z1k) :N(szm) (14)

posterior error covariance (E{ (X x — Xk ) (Xkk —Xi)T})

where

Migk—1 = Pk-1Mi_1jk—1 (15)
Pijk—1 = Q-1+ Pr—1Px_1-1Px_1 (16)
My = Mygr—1 + K (Zk — HeMye-1) a7
Prik = Pijk—1 — KkHk P k-1 (18)
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Kalman Filter

State-Space Equations

Xk 1 = Puo1Xk 11 (19)

Pijk—1 = Q-1 + Pr—1Px_1-1Px_1 (20)
Xk = X1+ K (Zk — ik 1) (21)
Pijk = Pij—1(I = KkHkPjie—1) (22)
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Kalman Filter

State-Space Equations

Xk 1 = Puo1Xk 11 (19)

Pijk—1 = Q-1 + Pr—1Px_1-1Px_1 (20)
Xk = Xik—1+ (Zk — HiXje 1) (21)
Py = Pig—1(I — KkHkPjie—1) (22)

(n x m) Kalman gain
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Kalman Filter

State-Space Equations

Xk 1 = Puo1Xk 11 (19)

Pijk—1 = Q-1 + Pr—1Px_1-1Px_1 (20)
Xk = Xik-1+ Kk (m) (21)
Pijk = Pij—1(I = KkHkPyjie—1) (22)

Measurement innovation
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Kalman Filter

Kalman Gain

Kk = Pyk—1Hk ( HiPyp—1HE + R )7 (23)
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Kalman Filter

Kalman Gain

K = Py—1HE ( ‘@ ) (23)

Covariance of the innovation term
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Kalman Filter

Kalman filter data flow

Initial estimate ()%0 and Pg)
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Kalman Filter

Kalman filter data flow

Initial estimate ()%0 and Pg)

)

[ Compute Kalman gain ]

Kk = Pik—1Hi (HPy_1HE +Ri) ™t
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Kalman Filter

Kalman filter data flow

Initial estimate ()%0 and Pg)

)

[ Compute Kalman gain ]

Kk = Pik—1Hi (HPy_1HE +Ri) ™t

Update estimate with measurement Z
Xie = Xiefk—1 + Kk (Zk = HiXg—1)
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Kalman Filter

Kalman filter data flow

Initial estimate ()%0 and Pg)

)

Compute Kalman gain
Kk = Pik—1Hi (HPy_1HE +Ri) ™t

Update estimate with measurement Z
Xie = Xiefk—1 + Kk (Zk = HiXg—1)

Update error covariance
Pyik = Pik—1 = Kk Hk Py k-1
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Kalman Filter

Kalman filter data flow

Initial estimate ()%0 and Pg)

)

Compute Kalman gain
Kk = Pik—1Hi (HPy_1HE +Ri) ™t

Project ahead
Xy k-1 = Pk—1XK_1k—1
.
Prjk—1 = Qk-1 + Pxk—1Px 1k 1Px_1

Update estimate with measurement Z
Xie = Xiefk—1 + Kk (Zk = HiXg—1)

k=k+1

Update error covariance
Pyik = Pik—1 = Kk Hk Py k-1
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Kalman Filter

Kalman filter data flow

Initial estimate ()%0 and Pg)

)

Compute Kalman gain
Kk = Pik—1Hi (HPy_1HE +Ri) ™t

Project ahead
Xy k-1 = Pk—1XK_1k—1
.
Prjk—1 = Qk-1 + Pxk—1Px 1k 1Px_1

Update estimate with measurement Z
Xie = Xiefk—1 + Kk (Zk = HiXg—1)

k=k+1

Update error covariance
Pyik = Pik—1 = Kk Hk Py k-1
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Observability

The system is observable if the observability matrix

H(k —n+1)
Hk —n—-2)®(k —n+1)
Ok) = : (24)

H(K)®(k —1)...®(k —n+1)

where n is the number of states, has a rank of n. The rank of O is a
binary indicator and does not provide a measure of how close the
system is to being unobservable, hence, is prone to numerical
ill-conditioning.
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Kalman Filter

A Better Observability Measure

In addition to the computation of the rank of O(k), compute the
Singular Value Decomposition (SVD) of O(k) as

O =UxV* (25)

and observe the diagonal values of the matrix . Using this approach it
is possible to monitor the variations in the system observability due to
changes in system dynamics.
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Kalman Filter

Remarks

@ Kalman filter is optimal under the aforementioned assumptions,
@ and itis also an unbiased and minimum variance estimate.

@ If the Gaussian assumptions is not true, Kalman filter is biased
and not minimum variance.

@ Observability is dynamics dependent.

@ The error covariance update may be implemented using the
Joseph form which provides a more stable solution due to the
guaranteed symmetry.

Pijk = (I — KiHi) Pr1 (I = KHi) T + K ReK§ (26)
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System Model

X(t) = F(O)X(t) + G(t)W (1) (27)

To obtain the state vector estimate X (t)

E{X(0)} = SX(1) = FOR (1) (28)

Solving the above equation over the interval t — 5, t

ﬂo—&ﬁm “)a—g) (29)

where F¢_; is the average of F attimest and t — .
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Kalman Filter

System Model Discretization

As shown in the Kalman filter equations the state vector estimate is
given by

Xkk—1 = Pk—1Xk_1jk-1
Therefore,
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System Model Discretization

As shown in the Kalman filter equations the state vector estimate is
given by

Xkk—1 = Pk—1Xk_1jk-1
Therefore,

Pyg =e™1E I+t (30) J

where F¢_; is the average of F attimes t and t — 15, and first order
approximation is used.
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Kalman Filter

Discrete Covariance Matrix Q ¢

The solution to (27) is
t
Xk = Py_1Xk_1 +/ efi1t=nGy 4w (1)dy (31)
t—1s

where Gi_; is the average of G attimest and t — 5. Now let’s look at
the error covariance matrix

Pek—1 = B{(Xijk_1 — Xi) K1 — %)} (32)

where

~ N t
Xik—1 — Xk = @1 (Xg_1—1 — Xk) — / efk 1G4 W (17)dy

1—7s
(33)
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Kalman Filter

Discrete Covariance Matrix Q  (cont.)

Since the state estimate errors and the system noise W (t) are
uncorrelated

Puk—1 =Pr-1Pk 1k 1‘1’1 1t
B{ [ ert e i ()aT (@)6] e Daydc |
1—7s
=@y 1Py g1 P 1+
t
| ef e LB ()W (2)}6T_yeT:Idyag
t1—7s

=@ 1Py -1 Prq + Q1
(34)
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Kalman Filter

Discrete Covariance Matrix Q  (cont.)

Assuming white noise, small time step, G is constant over the
integration period, and the trapezoidal integration

1
Q-1 % 3 | @16k 1Q(t-1)G1_1 @ + Gk1Q(tc-1)Gl_y|
(35)

where

E{W ()W ()} = Q(n)é(y — ) (36)
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Extended Kalman Filter (EKF)

Linearized System

F of (X)
K™ X

where
o of
N IX IX
of(X) _ [o, ot
a)—(’ - aXl aXZ

Aly El-Osery (NMT)

oh(X)
1 Hk = a—'
Rifk-1 X8 =Ry s
ohy  dhy
- oX oX

oh(X) | anz anj

' a)—(‘ - E)xl 0Xp
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First Order Markov Noise

State Equation

A(t) = —Tin(t) Fw(t) (39)

Autocorrelation Function

E{n(t)(n(t+ 1)} = ¢?e 1/ (40)
where
E{w(t)w(t+ 1)} =Q(t)s(t — 1) (41)
202
Q) = T (42)

and T is the correlation time.
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Discrete First Order Markov Noise

State Equation

_1
Ne =€ Te™N_1+ W1 (43)

System Covariance Matrix

Q=c?l—e 7 (44)
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Autocorrelation of 1st order Markov

Rn(7) = c?e I/ Te
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Small Correlation Time T, = 0.01

Rn(7)
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Small Correlation Time T, = 0.01

Rn(T) 1

n(
o

Time (sec)

—— Measured — Actual —— Estimated
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Larger Correlation Time T, =0.1

Rn(7)
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Example

=01

Larger Correlation Time  T¢

Rn(7)

0.8

0.6

0.4

0.2

Time (sec)

Estimated

— Actual

—— Measured
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Other Solutions

Unscented Kalman Filter (UKF)

Propagates carefully chosen sample points (using unscented
transformation) through the true non-linear system, and therefore
captures the posterior mean and covariance accurately to the second
order.
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Particle Filter

A Monte Carlo based method. It allows for a complete representation
of the state distribution function. Unlike EKF and UKF, particle filters
do not require the Gaussian assumptions.
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