EE 570: Location and Navigation On-Line Bayesian Tracking

Aly El-Osery

Electrical Engineering Department, New Mexico Tech
Socorro, New Mexico, USA

April 11, 2011

Objective

Sequentially estimate on-line the states of a system as it changes over time using observations that are corrupted with noise.

Given State-Space Equations

$$
\begin{gather*}
\overrightarrow{\boldsymbol{x}}_{k}=\mathbf{f}_{k}\left(\overrightarrow{\boldsymbol{x}}_{k-1}, \overrightarrow{\boldsymbol{w}}_{k-1}\right) \tag{1}\\
\overrightarrow{\boldsymbol{z}}_{k}=\mathbf{h}_{k}\left(\overrightarrow{\boldsymbol{x}}_{k}, \overrightarrow{\boldsymbol{v}}_{k}\right) \tag{2}
\end{gather*}
$$

Given State-Space Equations

$(n \times 1)$ state vector at time k

$$
\begin{equation*}
\overbrace{k}=\mathbf{h}_{k}\left(\overrightarrow{\boldsymbol{x}}_{k}, \overrightarrow{\boldsymbol{v}}_{k}\right) \tag{2}
\end{equation*}
$$

($m \times 1$) measurement vector at time k

Given State-Space Equations

$$
\begin{equation*}
\overrightarrow{\boldsymbol{z}}_{k}=\boldsymbol{h}_{k}\left(\overrightarrow{\boldsymbol{x}}_{k}, \overrightarrow{\boldsymbol{v}}_{k}\right) \tag{2}
\end{equation*}
$$

Possibly non-linear function, $\mathbf{h}_{k}: \mathfrak{R}^{m} \times \mathfrak{R}^{n_{v}} \mapsto \mathfrak{R}^{m}$

Given State-Space Equations

$$
\overrightarrow{\boldsymbol{x}}_{k}=\mathbf{f}_{k}\left(\overrightarrow{\boldsymbol{x}}_{k-1},{\left.\stackrel{\left(\overrightarrow{\boldsymbol{w}}_{k}\right.}{ }-1\right)}_{\text {i.i.d state noise }}\right.
$$

$$
\begin{equation*}
\overrightarrow{\boldsymbol{z}}_{k}=\mathbf{h}_{k}\left(\overrightarrow{\boldsymbol{x}}_{k}, \overrightarrow{\boldsymbol{v}}_{k}\right) \tag{2}
\end{equation*}
$$

i.i.d measurement noise

Given State-Space Equations

$$
\begin{equation*}
\overrightarrow{\boldsymbol{x}}_{k}=\mathbf{f}_{k}\left(\overrightarrow{\boldsymbol{x}}_{k-1}, \overrightarrow{\boldsymbol{w}}_{k-1}\right) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\overrightarrow{\boldsymbol{z}}_{k}=\mathbf{h}_{k}\left(\overrightarrow{\boldsymbol{x}}_{k}, \overrightarrow{\boldsymbol{v}}_{k}\right) \tag{2}
\end{equation*}
$$

The state process is Markov chain, i.e.,
$p\left(\overrightarrow{\boldsymbol{x}}_{k} \mid \overrightarrow{\boldsymbol{x}}_{1}, \ldots, \overrightarrow{\boldsymbol{x}}_{k-1}\right)=p\left(\overrightarrow{\boldsymbol{x}}_{k} \mid \overrightarrow{\boldsymbol{x}}_{k-1}\right)$ and the distribution of $\overrightarrow{\boldsymbol{z}}_{k}$ conditional on the state $\overrightarrow{\boldsymbol{x}}_{k}$ is independent of previous state and measurement values, i.e., $p\left(\overrightarrow{\boldsymbol{z}}_{k} \mid \overrightarrow{\boldsymbol{x}}_{1: k}, \overrightarrow{\boldsymbol{z}}_{1: k-1}\right)=p\left(\overrightarrow{\boldsymbol{z}}_{k} \mid \overrightarrow{\boldsymbol{x}}_{k}\right)$

Objective

Probabilistically estimate $\overrightarrow{\boldsymbol{x}}_{k}$ using previous measurement $\overrightarrow{\boldsymbol{z}}_{1: k}$. In other words, construct the pdf $p\left(\overrightarrow{\boldsymbol{x}}_{k} \mid \overrightarrow{\boldsymbol{z}}_{1: k}\right)$.

Objective

Probabilistically estimate $\overrightarrow{\boldsymbol{x}}_{k}$ using previous measurement $\overrightarrow{\boldsymbol{z}}_{1: k}$. In other words, construct the pdf $p\left(\overrightarrow{\boldsymbol{x}}_{k} \mid \overrightarrow{\boldsymbol{z}}_{1: k}\right)$.

Optimal MMSE Estimate

$$
\begin{equation*}
\mathbb{E}\left\{\left\|\overrightarrow{\boldsymbol{x}}_{k}-\hat{\overrightarrow{\boldsymbol{x}}}_{k}\right\|^{2}\right\}=\int\left\|\overrightarrow{\boldsymbol{x}}_{k}-\hat{\boldsymbol{x}}_{k}\right\|^{2} p\left(\overrightarrow{\boldsymbol{x}}_{k} \mid \overrightarrow{\boldsymbol{z}}_{1: k}\right) d \overrightarrow{\boldsymbol{x}}_{k} \tag{3}
\end{equation*}
$$

in other words find the conditional mean

$$
\begin{equation*}
\hat{\overrightarrow{\boldsymbol{x}}}_{k}=\mathbb{E}\left\{\overrightarrow{\boldsymbol{x}}_{k} \mid \overrightarrow{\boldsymbol{z}}_{1: k}\right\}=\int \overrightarrow{\boldsymbol{x}}_{k} p\left(\overrightarrow{\boldsymbol{x}}_{k} \mid \overrightarrow{\boldsymbol{z}}_{1: k}\right) d \overrightarrow{\boldsymbol{x}}_{k} \tag{4}
\end{equation*}
$$

Prediction Stage

$$
\begin{equation*}
p\left(\overrightarrow{\boldsymbol{x}}_{k} \mid \overrightarrow{\boldsymbol{z}}_{1: k-1}\right)=\int p\left(\overrightarrow{\boldsymbol{x}}_{k} \mid \overrightarrow{\boldsymbol{x}}_{k-1}\right) p\left(\overrightarrow{\boldsymbol{x}}_{k-1} \mid \overrightarrow{\boldsymbol{z}}_{1: k-1}\right) d \overrightarrow{\boldsymbol{x}}_{k-1} \tag{5}
\end{equation*}
$$

Prediction Stage

$$
\begin{equation*}
p\left(\overrightarrow{\boldsymbol{x}}_{k} \mid \overrightarrow{\boldsymbol{z}}_{1: k-1}\right)=\int p\left(\overrightarrow{\boldsymbol{x}}_{k} \mid \overrightarrow{\boldsymbol{x}}_{k-1} p\left(\overrightarrow{\boldsymbol{x}}_{k-1} \mid \overrightarrow{\boldsymbol{z}}_{1: k-1}\right) d \overrightarrow{\boldsymbol{x}}_{k-1}\right. \tag{5}
\end{equation*}
$$

defined using the state equation

Prediction Stage

$$
\begin{gather*}
p\left(\overrightarrow{\boldsymbol{x}}_{k} \mid \overrightarrow{\boldsymbol{z}}_{1: k-1}\right)=\int p\left(\overrightarrow{\boldsymbol{x}}_{k} \mid \overrightarrow{\boldsymbol{x}}_{k-1}\right)<\overrightarrow{\boldsymbol{x}}_{k-1} \mid \overrightarrow{\boldsymbol{z}}_{1: k-1} d \overrightarrow{\boldsymbol{x}}_{k-1} \tag{5}\\
\text { Assumed available from previous iteration }
\end{gather*}
$$

Update Stage

Using Bayes' Rule

$$
\begin{equation*}
p\left(\overrightarrow{\boldsymbol{x}}_{k} \mid \overrightarrow{\boldsymbol{z}}_{1: k}\right)=\frac{p\left(\overrightarrow{\boldsymbol{z}}_{k} \mid \overrightarrow{\boldsymbol{x}}_{k}\right) p\left(\overrightarrow{\boldsymbol{x}}_{k} \mid \overrightarrow{\boldsymbol{z}}_{1: k-1}\right)}{p\left(\overrightarrow{\boldsymbol{z}}_{k} \mid \overrightarrow{\boldsymbol{z}}_{1: k-1}\right)} \tag{6}
\end{equation*}
$$

Update Stage

Using Bayes' Rule

$$
\begin{equation*}
p\left(\overrightarrow{\boldsymbol{x}}_{k} \mid \overrightarrow{\boldsymbol{z}}_{1: k}\right)=\frac{p\left(\overrightarrow{\boldsymbol{z}}_{k} \mid \overrightarrow{\boldsymbol{x}}_{k}\right) p\left(\overrightarrow{\boldsymbol{x}}_{k} \mid \overrightarrow{\boldsymbol{z}}_{1: k-1}\right)}{p\left(\overrightarrow{\boldsymbol{z}}_{k} \mid \overrightarrow{\boldsymbol{z}}_{1: k-1}\right)} \tag{6}
\end{equation*}
$$

posterior

Update Stage

Using Bayes' Rule

$$
\begin{equation*}
p\left(\overrightarrow{\boldsymbol{x}}_{k} \mid \overrightarrow{\boldsymbol{z}}_{1: k}\right)=\frac{p\left(\overrightarrow{\boldsymbol{z}}_{k} \mid \overrightarrow{\boldsymbol{x}}_{k}\right) p\left(\overrightarrow{\boldsymbol{x}}_{k} \mid \overrightarrow{\boldsymbol{z}}_{1: k-1}\right)}{\left(p\left(\overrightarrow{\boldsymbol{z}}_{k} \mid \overrightarrow{\boldsymbol{z}}_{1: k-1}\right)\right.} \tag{6}
\end{equation*}
$$

likelihood: defined by the measurement equation and the statistics of the measurement noise $\overrightarrow{\boldsymbol{v}}_{k}$

Update Stage

Using Bayes' Rule

$$
\begin{equation*}
p\left(\overrightarrow{\boldsymbol{x}}_{k} \mid \overrightarrow{\boldsymbol{z}}_{1: k}\right)=\frac{p\left(\overrightarrow{\boldsymbol{z}}_{k} \mid \overrightarrow{\boldsymbol{x}}_{k}\right) p\left(\overrightarrow{\boldsymbol{x}}_{k} \mid \overrightarrow{\boldsymbol{z}}_{1: k-1}\right)}{p\left(\overrightarrow{\boldsymbol{z}}_{k} \mid \overrightarrow{\boldsymbol{z}}_{1: k-1}\right)} \tag{6}
\end{equation*}
$$

prior: defined by the state equation and the statistics of the state noise $\overrightarrow{\boldsymbol{w}}_{k-1}$

Update Stage

Using Bayes' Rule

$$
\begin{align*}
& p\left(\overrightarrow{\boldsymbol{x}}_{k} \mid \overrightarrow{\boldsymbol{z}}_{1: k}\right)=\frac{p\left(\overrightarrow{\boldsymbol{z}}_{k} \mid \overrightarrow{\boldsymbol{x}}_{k}\right) p\left(\overrightarrow{\boldsymbol{x}}_{k} \mid \overrightarrow{\boldsymbol{z}}_{1: k-1}\right)}{p\left(\overrightarrow{\boldsymbol{z}}_{k} \mid \overrightarrow{\boldsymbol{z}}_{1: k-1}\right)} \tag{6}\\
& \quad \text { evidence }=\int p\left(\overrightarrow{\boldsymbol{z}}_{k} \mid \overrightarrow{\boldsymbol{x}}_{k}\right) p\left(\overrightarrow{\boldsymbol{x}}_{k} \mid \overrightarrow{\boldsymbol{z}}_{1: k-1}\right) d \overrightarrow{\boldsymbol{x}}_{k} \\
& \quad \text { and depends on the likelihood function } p\left(\overrightarrow{\boldsymbol{z}}_{k} \mid \overrightarrow{\boldsymbol{x}}_{k}\right)
\end{align*}
$$

Limitations

(1) Need to keep track of all previous states.
(2) Generally can't be determined analytically.

Assumptions

- $\overrightarrow{\boldsymbol{w}}_{k}$ and $\overrightarrow{\boldsymbol{v}}_{k}$ are drawn from a Gaussian distribution, uncorrelated have zero mean and statistically independent.

$$
\begin{align*}
& \mathbb{E}\left\{\overrightarrow{\boldsymbol{w}}_{k} \overrightarrow{\boldsymbol{w}}_{i}^{T}\right\}= \begin{cases}\mathbf{Q}_{k} & i=k \\
0 & i \neq k\end{cases} \tag{7}\\
& \mathbb{E}\left\{\overrightarrow{\boldsymbol{v}}_{k} \overrightarrow{\boldsymbol{v}}_{i}^{T}\right\}= \begin{cases}\mathbf{R}_{k} & i=k \\
0 & i \neq k\end{cases} \tag{8}\\
& \mathbb{E}\left\{\overrightarrow{\boldsymbol{w}}_{k} \overrightarrow{\boldsymbol{v}}_{i}^{T}\right\}= \begin{cases}0 & \forall i, k\end{cases} \tag{9}
\end{align*}
$$

Assumptions

- \mathbf{f}_{k} and \mathbf{h}_{k} are both linear, e.g., the state-space system equations may be written as

$$
\begin{gather*}
\overrightarrow{\boldsymbol{x}}_{k}=\boldsymbol{\Phi}_{k-1} \overrightarrow{\boldsymbol{x}}_{k-1}+\overrightarrow{\boldsymbol{w}}_{k-1} \tag{10}\\
\overrightarrow{\boldsymbol{y}}_{k}=\mathbf{H}_{k} \overrightarrow{\boldsymbol{x}}_{k}+\overrightarrow{\boldsymbol{v}}_{k} \tag{11}
\end{gather*}
$$

Assumptions

- \mathbf{f}_{k} and \mathbf{h}_{k} are both linear, e.g., the state-space system equations may be written as

$$
\begin{gather*}
\overrightarrow{\boldsymbol{x}}_{k}=\underbrace{\boldsymbol{\Phi}_{k-1}}_{k-1} \overrightarrow{\boldsymbol{x}}_{k-1}+\overrightarrow{\boldsymbol{w}}_{k-1} \tag{10}\\
\overrightarrow{\boldsymbol{y}}_{k}=\mathbf{H}_{k} \overrightarrow{\boldsymbol{x}}_{k}+\overrightarrow{\boldsymbol{v}}_{k}
\end{gather*}
$$

$(n \times n)$ transition matrix relating $\overrightarrow{\boldsymbol{x}}_{k-1}$ to $\overrightarrow{\boldsymbol{x}}_{k}$

Assumptions

- \mathbf{f}_{k} and \mathbf{h}_{k} are both linear, e.g., the state-space system equations may be written as

$$
\begin{equation*}
\overrightarrow{\boldsymbol{x}}_{k}=\boldsymbol{\Phi}_{k-1} \overrightarrow{\boldsymbol{x}}_{k-1}+\overrightarrow{\boldsymbol{w}}_{k-1} \tag{10}
\end{equation*}
$$

$(m \times n)$ matrix provides noiseless connection between measurement and state vectors

pdf notation

$$
\begin{gather*}
p\left(\overrightarrow{\boldsymbol{x}}_{k-1} \mid \overrightarrow{\boldsymbol{z}}_{1: k-1}\right)=\mathcal{N}\left(\overrightarrow{\boldsymbol{x}}_{k-1} ; \overrightarrow{\boldsymbol{m}}_{k-1 \mid k-1}, \mathbf{P}_{k-1 \mid k-1}\right) \tag{12}\\
p\left(\overrightarrow{\boldsymbol{x}}_{k} \mid \overrightarrow{\boldsymbol{z}}_{1: k-1}\right)=\mathcal{N}\left(\overrightarrow{\boldsymbol{x}}_{k} ; \overrightarrow{\boldsymbol{m}}_{k \mid k-1}, \mathbf{P}_{k \mid k-1}\right) \tag{13}\\
p\left(\overrightarrow{\boldsymbol{x}}_{k} \mid \overrightarrow{\boldsymbol{z}}_{1: k}\right)=\mathcal{N}\left(\overrightarrow{\boldsymbol{x}}_{k} ; \overrightarrow{\boldsymbol{m}}_{k \mid k}, \mathbf{P}_{k \mid k}\right) \tag{14}
\end{gather*}
$$

where

$$
\begin{gather*}
\overrightarrow{\boldsymbol{m}}_{k \mid k-1}=\boldsymbol{\Phi}_{k-1} \overrightarrow{\boldsymbol{m}}_{k-1 \mid k-1} \tag{15}\\
\mathbf{P}_{k \mid k-1}=\mathbf{Q}_{k-1}+\boldsymbol{\Phi}_{k-1} \mathbf{P}_{k-1 \mid k-1} \boldsymbol{\Phi}_{k-1}^{T} \tag{16}\\
\overrightarrow{\boldsymbol{m}}_{k \mid k}=\overrightarrow{\boldsymbol{m}}_{k \mid k-1}+\mathbf{K}_{k}\left(\overrightarrow{\boldsymbol{z}}_{k}-\mathbf{H}_{k} \overrightarrow{\boldsymbol{m}}_{k \mid k-1}\right) \tag{17}\\
\mathbf{P}_{k \mid k}=\mathbf{P}_{k \mid k-1}-\mathbf{K}_{k} \mathbf{H}_{k} \mathbf{P}_{k \mid k-1} \tag{18}
\end{gather*}
$$

pdf notation

$$
\begin{align*}
& \text { a priori error covariance (}\left(\mathbb{E}\left\{\left(\hat{\boldsymbol{x}}_{k-1 \mid k-1}-\overrightarrow{\boldsymbol{x}}_{k-1}\right)\left(\hat{\boldsymbol{x}}_{k-1 \mid k-1}-\overrightarrow{\boldsymbol{x}}_{k-1}\right)^{\top}\right\}\right) . \\
& \text { Diagonal terms are the variances in the state estimates } \\
& \text { off-diagonal show correlation between the errors in the different states } \\
& p\left(\overrightarrow{\boldsymbol{X}}_{k-1} \mid \overrightarrow{\boldsymbol{Z}}_{1: k-1}\right)=\mathcal{N}\left(\overrightarrow{\boldsymbol{x}}_{k-1} ; \overrightarrow{\boldsymbol{m}}_{k-1 \mid k-1}\right. \tag{12}\\
& \qquad p\left(\overrightarrow{\boldsymbol{x}}_{k} \mid \overrightarrow{\boldsymbol{z}}_{1: k-1}\right)=\mathcal{N}\left(\overrightarrow{\boldsymbol{x}}_{k} ; \overrightarrow{\boldsymbol{m}}_{k \mid k-1}, \mathbf{P}_{k \mid k-1}\right) \tag{13}\\
& p\left(\overrightarrow{\boldsymbol{x}}_{k} \mid \overrightarrow{\boldsymbol{Z}}_{1: k}\right)=\mathcal{N}\left(\overrightarrow{\boldsymbol{x}}_{k} ; \overrightarrow{\boldsymbol{m}}_{k \mid k}, \mathbf{P}_{k \mid k}\right) \tag{14}
\end{align*}
$$

where

$$
\begin{gather*}
\overrightarrow{\boldsymbol{m}}_{k \mid k-1}=\boldsymbol{\Phi}_{k-1} \overrightarrow{\boldsymbol{m}}_{k-1 \mid k-1} \tag{15}\\
\mathbf{P}_{k \mid k-1}=\mathbf{Q}_{k-1}+\boldsymbol{\Phi}_{k-1} \mathbf{P}_{k-1 \mid k-1} \boldsymbol{\Phi}_{k-1}^{T} \tag{16}\\
\overrightarrow{\boldsymbol{m}}_{k \mid k}=\overrightarrow{\boldsymbol{m}}_{k \mid k-1}+\mathbf{K}_{k}\left(\overrightarrow{\boldsymbol{z}}_{k}-\mathbf{H}_{k} \overrightarrow{\boldsymbol{m}}_{k \mid k-1}\right) \tag{17}\\
\mathbf{P}_{k \mid k}=\mathbf{P}_{k \mid k-1}-\mathbf{K}_{k} \mathbf{H}_{k} \mathbf{P}_{k \mid k-1} \tag{18}
\end{gather*}
$$

pdf notation

$$
\begin{gather*}
p\left(\overrightarrow{\boldsymbol{x}}_{k-1} \mid \overrightarrow{\boldsymbol{z}}_{1: k-1}\right)=\mathcal{N}\left(\overrightarrow{\boldsymbol{x}}_{k-1} ; \overrightarrow{\boldsymbol{m}}_{k-1 \mid k-1}, \mathbf{P}_{k-1 \mid k-1}\right) \tag{12}\\
p\left(\overrightarrow{\boldsymbol{x}}_{k} \mid \overrightarrow{\boldsymbol{z}}_{1: k-1}\right)=\mathcal{N}\left(\overrightarrow{\boldsymbol{x}}_{k} ; \overrightarrow{\boldsymbol{m}}_{k \mid k-1}, \mathbf{P}_{k \mid k-1}\right) \tag{13}\\
p\left(\overrightarrow{\boldsymbol{x}}_{k} \mid \overrightarrow{\boldsymbol{z}}_{1: k}\right)=\mathcal{N}\left(\overrightarrow{\boldsymbol{x}}_{k} ; \overrightarrow{\boldsymbol{m}}_{k \mid k}, \boldsymbol{P}_{k \mid k}\right) \tag{14}
\end{gather*}
$$

where

$$
\begin{gather*}
\overrightarrow{\boldsymbol{m}}_{k \mid k-1}=\boldsymbol{\Phi}_{k-1} \overrightarrow{\boldsymbol{m}}_{k-1 \mid k-1} \tag{15}\\
\mathbf{P}_{k \mid k-1}=\mathbf{Q}_{k-1}+\boldsymbol{\Phi}_{k-1} \mathbf{P}_{k-1 \mid k-1} \boldsymbol{\Phi}_{k-1}^{T} \tag{16}\\
\overrightarrow{\boldsymbol{m}}_{k \mid k}=\overrightarrow{\boldsymbol{m}}_{k \mid k-1}+\mathbf{K}_{k}\left(\overrightarrow{\boldsymbol{z}}_{k}-\mathbf{H}_{k} \overrightarrow{\boldsymbol{m}}_{k \mid k-1}\right) \tag{17}\\
\mathbf{P}_{k \mid k}=\mathbf{P}_{k \mid k-1}-\mathbf{K}_{k} \mathbf{H}_{k} \mathbf{P}_{k \mid k-1} \tag{18}
\end{gather*}
$$

State-Space Equations

$$
\begin{gather*}
\hat{\overrightarrow{\boldsymbol{x}}}_{k \mid k-1}=\boldsymbol{\Phi}_{k-1} \hat{\overrightarrow{\boldsymbol{x}}}_{k-1 \mid k-1} \tag{19}\\
\mathbf{P}_{k \mid k-1}=\mathbf{Q}_{k-1}+\boldsymbol{\Phi}_{k-1} \mathbf{P}_{k-1 \mid k-1} \boldsymbol{\Phi}_{k-1}^{T} \tag{20}\\
\hat{\overrightarrow{\boldsymbol{x}}}_{k \mid k}=\hat{\overrightarrow{\boldsymbol{x}}}_{k \mid k-1}+\mathbf{K}_{k}\left(\overrightarrow{\boldsymbol{z}}_{k}-\mathbf{H}_{k} \hat{\overrightarrow{\boldsymbol{x}}}_{k \mid k-1}\right) \tag{21}\\
\mathbf{P}_{k \mid k}=\mathbf{P}_{k \mid k-1}\left(\mathbf{I}-\mathbf{K}_{k} \mathbf{H}_{k} \mathbf{P}_{k \mid k-1}\right) \tag{22}
\end{gather*}
$$

State-Space Equations

$$
\begin{gather*}
\hat{\overrightarrow{\boldsymbol{x}}}_{k \mid k-1}=\boldsymbol{\Phi}_{k-1} \hat{\overrightarrow{\boldsymbol{x}}}_{k-1 \mid k-1} \tag{19}\\
\mathbf{P}_{k \mid k-1}=\mathbf{Q}_{k-1}+\boldsymbol{\Phi}_{k-1} \mathbf{P}_{k-1 \mid k-1} \boldsymbol{\Phi}_{k-1}^{T} \tag{20}\\
\hat{\overrightarrow{\boldsymbol{x}}}_{k \mid k}=\hat{\overrightarrow{\boldsymbol{x}}}_{k \mid k-1}+\mathbf{K}_{k}\left(\overrightarrow{\boldsymbol{z}}_{k}-\mathbf{H}_{k} \hat{\overrightarrow{\boldsymbol{x}}}_{k \mid k-1}\right) \tag{21}\\
\mathbf{P}_{k \mid k}=\mathbf{P}_{k / k-1}\left(\mathbf{I}-\mathbf{K}_{k} \mathbf{H}_{k} \mathbf{P}_{k \mid k-1}\right) \tag{22}\\
(n \times m) \text { Kalman gain }
\end{gather*}
$$

State-Space Equations

$$
\begin{gather*}
\hat{\overrightarrow{\boldsymbol{x}}}_{k \mid k-1}=\boldsymbol{\Phi}_{k-1} \hat{\overrightarrow{\boldsymbol{x}}}_{k-1 \mid k-1} \tag{19}\\
\mathbf{P}_{k \mid k-1}=\mathbf{Q}_{k-1}+\boldsymbol{\Phi}_{k-1} \mathbf{P}_{k-1 \mid k-1} \boldsymbol{\Phi}_{k-1}^{T} \tag{20}\\
\overrightarrow{\boldsymbol{x}}_{k \mid k}=\hat{\overrightarrow{\boldsymbol{x}}}_{k \mid k-1}+\mathbf{K}_{k}{\stackrel{\vec{z}_{k}-\mathbf{H}_{k} \hat{\overrightarrow{\boldsymbol{x}}}_{k \mid k-1}}{ }}_{\mathbf{P}_{k \mid k}=\mathbf{P}_{k \mid k-1}\left(\mathbf{I}-\mathbf{K}_{k} \mathbf{H}_{k} \mathbf{P}_{k \mid k-1}\right)}^{\text {Measurement innovation }} \tag{21}
\end{gather*}
$$

Kalman Gain

$$
\begin{equation*}
\mathbf{K}_{k}=\mathbf{P}_{k \mid k-1} \mathbf{H}_{k}^{T}\left(\mathbf{H}_{k} \mathbf{P}_{k \mid k-1} \mathbf{H}_{k}^{T}+\mathbf{R}_{k}\right)^{-1} \tag{23}
\end{equation*}
$$

Kalman Gain

$$
\begin{equation*}
\mathbf{K}_{k}=\mathbf{P}_{k \mid k-1} \mathbf{H}_{k}^{T}(\underbrace{}_{\mathbf{H}_{k} \mathbf{P}_{k \mid k-1} \mathbf{H}_{k}^{T}+\mathbf{R}_{k}})^{-1} \tag{23}
\end{equation*}
$$

Covariance of the innovation term

Kalman filter data flow

Initial estimate ($\hat{\vec{x}}_{0}$ and \mathbf{P}_{0})

Kalman filter data flow

Kalman filter data flow

Kalman filter data flow

Kalman filter data flow

$$
\begin{aligned}
& \text { Initial estimate (} \hat{\overline{\boldsymbol{x}}}_{0} \text { and } \mathbf{P}_{0} \text {) } \\
& \text { Compute Kalman gain } \\
& \mathbf{K}_{k}=\mathbf{P}_{k \mid k-1} \mathbf{H}_{k}^{T}\left(\mathbf{H}_{k} \mathbf{P}_{k \mid k-1} \mathbf{H}_{k}^{T}+\mathbf{R}_{k}\right)^{-1}
\end{aligned}
$$

Project ahead
$\hat{\overrightarrow{\boldsymbol{x}}}_{k \mid k-1}=\boldsymbol{\Phi}_{k-1} \hat{\overrightarrow{\boldsymbol{x}}}_{k-1 \mid k-1}$

$$
\mathbf{P}_{k \mid k-1}=\mathbf{Q}_{k-1}+\boldsymbol{\Phi}_{k-1} \mathbf{P}_{k-1 \mid k-1} \boldsymbol{\Phi}_{k-1}^{T}
$$

Update estimate with measurement $\overrightarrow{\boldsymbol{z}}_{k}$ $\hat{\overrightarrow{\boldsymbol{x}}}_{k \mid k}=\hat{\overrightarrow{\boldsymbol{x}}}_{k \mid k-1}+\mathbf{K}_{k}\left(\overrightarrow{\boldsymbol{z}}_{k}-\mathbf{H}_{k} \hat{\overrightarrow{\boldsymbol{x}}}_{k \mid k-1}\right)$

$$
\mathbf{P}_{k \mid k}=\mathbf{P}_{k \mid k-1}-\mathbf{K}_{k} \mathbf{H}_{k} \mathbf{P}_{k \mid k-1}
$$

Kalman filter data flow

Observability

The system is observable if the observability matrix

$$
\mathcal{O}(k)=\left[\begin{array}{c}
\boldsymbol{H}(k-n+1) \tag{24}\\
\boldsymbol{H}(k-n-2) \boldsymbol{\Phi}(k-n+1) \\
\vdots \\
\boldsymbol{H}(k) \boldsymbol{\Phi}(k-1) \ldots \boldsymbol{\Phi}(k-n+1)
\end{array}\right]
$$

where n is the number of states, has a rank of n. The rank of \mathcal{O} is a binary indicator and does not provide a measure of how close the system is to being unobservable, hence, is prone to numerical ill-conditioning.

A Better Observability Measure

In addition to the computation of the rank of $\mathcal{O}(k)$, compute the Singular Value Decomposition (SVD) of $\mathcal{O}(k)$ as

$$
\begin{equation*}
\mathcal{O}=U \Sigma V^{*} \tag{25}
\end{equation*}
$$

and observe the diagonal values of the matrix Σ. Using this approach it is possible to monitor the variations in the system observability due to changes in system dynamics.

Remarks

- Kalman filter is optimal under the aforementioned assumptions,
- and it is also an unbiased and minimum variance estimate.
- If the Gaussian assumptions is not true, Kalman filter is biased and not minimum variance.
- Observability is dynamics dependent.
- The error covariance update may be implemented using the Joseph form which provides a more stable solution due to the guaranteed symmetry.

$$
\begin{equation*}
\boldsymbol{P}_{k \mid k}=\left(\boldsymbol{I}-\boldsymbol{K}_{k} \boldsymbol{H}_{k}\right) \boldsymbol{P}_{k \mid k-1}\left(\boldsymbol{I}-\boldsymbol{K}_{k} \boldsymbol{H}_{k}\right)^{T}+\boldsymbol{K}_{k} \boldsymbol{R}_{k} \boldsymbol{K}_{k}^{T} \tag{26}
\end{equation*}
$$

System Model

$$
\begin{equation*}
\dot{\overrightarrow{\boldsymbol{x}}}(t)=\mathbf{F}(t) \overrightarrow{\boldsymbol{x}}(t)+\mathbf{G}(t) \overrightarrow{\boldsymbol{w}}(t) \tag{27}
\end{equation*}
$$

To obtain the state vector estimate $\hat{\overrightarrow{\boldsymbol{x}}}(t)$

$$
\begin{equation*}
\mathbb{E}\{\dot{\overrightarrow{\boldsymbol{x}}}(t)\}=\frac{\partial}{\partial t} \hat{\overrightarrow{\boldsymbol{x}}}(t)=\mathbf{F}(t) \hat{\overrightarrow{\boldsymbol{X}}}(t) \tag{28}
\end{equation*}
$$

Solving the above equation over the interval $t-\tau_{s}, t$

$$
\begin{equation*}
\hat{\overrightarrow{\boldsymbol{x}}}(t)=e^{\left(\int_{t-\tau_{s}}^{t} \mathbf{F}\left(t^{\prime}\right) d t^{\prime}\right)} \hat{\overrightarrow{\boldsymbol{x}}}\left(t-\tau_{s}\right) \tag{29}
\end{equation*}
$$

where \mathbf{F}_{k-1} is the average of \mathbf{F} at times t and $t-\tau_{s}$.

System Model Discretization

As shown in the Kalman filter equations the state vector estimate is given by

$$
\hat{\overrightarrow{\boldsymbol{x}}}_{k \mid k-1}=\boldsymbol{\Phi}_{k-1} \hat{\boldsymbol{x}}_{k-1 \mid k-1}
$$

Therefore,

System Model Discretization

As shown in the Kalman filter equations the state vector estimate is given by

$$
\hat{\overrightarrow{\boldsymbol{x}}}_{k \mid k-1}=\boldsymbol{\Phi}_{k-1} \hat{\boldsymbol{x}}_{k-1 \mid k-1}
$$

Therefore,

$$
\begin{equation*}
\boldsymbol{\Phi}_{k-1}=e^{\mathbf{F}_{k-1} \tau_{s}} \approx \mathbf{I}+\mathbf{F}_{k-1} \tau_{s} \tag{30}
\end{equation*}
$$

where \mathbf{F}_{k-1} is the average of \mathbf{F} at times t and $t-\tau_{s}$, and first order approximation is used.

Discrete Covariance Matrix \mathbf{Q}_{k}

The solution to (27) is

$$
\begin{equation*}
\overrightarrow{\boldsymbol{x}}_{k}=\boldsymbol{\Phi}_{k-1} \overrightarrow{\boldsymbol{x}}_{k-1}+\int_{t-\tau_{s}}^{t} e^{\mathbf{F}_{k-1}(t-\eta)} \mathbf{G}_{k-1} \overrightarrow{\boldsymbol{w}}(\eta) d \eta \tag{31}
\end{equation*}
$$

where \mathbf{G}_{k-1} is the average of \mathbf{G} at times t and $t-\tau_{s}$. Now let's look at the error covariance matrix

$$
\begin{equation*}
\mathbf{P}_{k \mid k-1}=\mathbb{E}\left\{\left(\hat{\overrightarrow{\boldsymbol{x}}}_{k \mid k-1}-\overrightarrow{\boldsymbol{x}}_{k}\right)\left(\hat{\overrightarrow{\boldsymbol{x}}}_{k \mid k-1}-\overrightarrow{\boldsymbol{x}}_{k}\right)^{T}\right\} \tag{32}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{\overrightarrow{\boldsymbol{x}}}_{k \mid k-1}-\overrightarrow{\boldsymbol{x}}_{k}=\boldsymbol{\Phi}_{k-1}\left(\hat{\overrightarrow{\boldsymbol{x}}}_{k-1 \mid k-1}-\overrightarrow{\boldsymbol{x}}_{k}\right)-\int_{t-\tau_{s}}^{t} e^{\mathbf{F}_{k-1}(t-\eta)} \mathbf{G}_{k-1} \overrightarrow{\boldsymbol{w}}(\eta) d \eta \tag{33}
\end{equation*}
$$

Discrete Covariance Matrix \mathbf{Q}_{k} (cont.)

Since the state estimate errors and the system noise $\overrightarrow{\boldsymbol{w}}(t)$ are uncorrelated

$$
\begin{align*}
\mathbf{P}_{k \mid k-1}= & \boldsymbol{\Phi}_{k-1} \mathbf{P}_{k-1 \mid k-1} \boldsymbol{\Phi}_{k-1}^{T}+ \\
& \mathbb{E}\left\{\iint_{t-\tau_{s}}^{t} e^{F_{k-1}(t-\eta)} \mathbf{G}_{k-1} \overrightarrow{\boldsymbol{w}}(\eta) \overrightarrow{\boldsymbol{w}}^{T}(\zeta) \mathbf{G}_{k-1}^{T} \mathrm{~F}_{k-1}^{T}(t-\zeta) d \eta d \zeta\right\} \\
= & \boldsymbol{\Phi}_{k-1} \mathbf{P}_{k-1 \mid k-1} \boldsymbol{\Phi}_{k-1}^{T}+ \\
& \iint_{t-\tau_{s}}^{t} e^{F_{k-1}(t-\eta)} \mathbf{G}_{k-1} \mathbb{E}\left\{\overrightarrow{\boldsymbol{w}}(\eta) \overrightarrow{\boldsymbol{w}}^{T}(\zeta)\right\} \mathbf{G}_{k-1}^{T} \boldsymbol{e}_{k-1}^{\mathbf{F}_{k-1}^{T}(t-\zeta)} d \eta d \zeta \\
= & \boldsymbol{\Phi}_{k-1} \mathbf{P}_{k-1 \mid k-1} \boldsymbol{\Phi}_{k-1}^{T}+\mathbf{Q}_{k-1} \tag{34}
\end{align*}
$$

Discrete Covariance Matrix \mathbf{Q}_{k} (cont.)

Assuming white noise, small time step, \mathbf{G} is constant over the integration period, and the trapezoidal integration

$$
\begin{equation*}
\mathbf{Q}_{k-1} \approx \frac{1}{2}\left[\mathbf{\Phi}_{k-1} \mathbf{G}_{k-1} \mathbf{Q}\left(t_{k-1}\right) \mathbf{G}_{k-1}^{T} \mathbf{\Phi}_{k-1}^{T}+\mathbf{G}_{k-1} \mathbf{Q}\left(t_{k-1}\right) \mathbf{G}_{k-1}^{T}\right] \tau_{s} \tag{35}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbb{E}\left\{\overrightarrow{\boldsymbol{w}}(\eta) \overrightarrow{\boldsymbol{w}}^{\top}(\zeta)\right\}=\mathbf{Q}(\eta) \delta(\eta-\zeta) \tag{36}
\end{equation*}
$$

Linearized System

$$
\begin{equation*}
\mathbf{F}_{k}=\left.\frac{\partial \mathbf{f}(\overrightarrow{\boldsymbol{x}})}{\partial \overrightarrow{\boldsymbol{x}}}\right|_{\overrightarrow{\boldsymbol{x}}=\hat{\boldsymbol{x}}_{k \mid k-1}}, \quad \mathbf{H}_{k}=\left.\frac{\partial \mathbf{h}(\overrightarrow{\boldsymbol{x}})}{\partial \overrightarrow{\boldsymbol{x}}}\right|_{\overrightarrow{\boldsymbol{x}}=\hat{\vec{x}}_{k \mid k-1}} \tag{37}
\end{equation*}
$$

where

$$
\frac{\partial \mathbf{f}(\overrightarrow{\boldsymbol{x}})}{\partial \overrightarrow{\boldsymbol{x}}}=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots \tag{38}\\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots \\
\vdots & \ddots & \vdots
\end{array}\right), \quad \frac{\partial \mathbf{h}(\overrightarrow{\boldsymbol{x}})}{\partial \overrightarrow{\boldsymbol{x}}}=\left(\begin{array}{ccc}
\frac{\partial h_{1}}{\partial x_{1}} & \frac{\partial h_{1}}{\partial x_{2}} & \cdots \\
\frac{\partial h_{2}}{\partial x_{1}} & \frac{\partial h_{2}}{\partial x_{2}} & \cdots \\
\vdots & \ddots & \vdots
\end{array}\right)
$$

First Order Markov Noise

State Equation

$$
\begin{equation*}
\dot{n}(t)=-\frac{1}{T_{c}} n(t)+w(t) \tag{39}
\end{equation*}
$$

Autocorrelation Function

$$
\begin{equation*}
\mathbb{E}\left\{n(t)(n(t+\tau)\}=\sigma^{2} e^{-|\tau| / T_{c}}\right. \tag{40}
\end{equation*}
$$

where

$$
\begin{gather*}
\mathbb{E}\{w(t) w(t+\tau)\}=Q(t) \delta(t-\tau) \tag{41}\\
Q(t)=\frac{2 \sigma^{2}}{T_{c}} \tag{42}
\end{gather*}
$$

and T_{c} is the correlation time.

Discrete First Order Markov Noise

State Equation

$$
\begin{equation*}
n_{k}=e^{-\frac{1}{T_{c}} \tau_{s}} n_{k-1}+w_{k-1} \tag{43}
\end{equation*}
$$

System Covariance Matrix

$$
\begin{equation*}
Q=\sigma^{2}\left[1-e^{-\frac{2}{T_{c}} \tau_{s}}\right] \tag{44}
\end{equation*}
$$

Autocorrelation of 1st order Markov

Small Correlation Time $T_{c}=0.01$

Small Correlation Time $T_{c}=0.01$

Larger Correlation Time $T_{c}=0.1$

Larger Correlation Time $T_{C}=0.1$

Unscented Kalman Filter (UKF)

Propagates carefully chosen sample points (using unscented transformation) through the true non-linear system, and therefore captures the posterior mean and covariance accurately to the second order.

Particle Filter

A Monte Carlo based method. It allows for a complete representation of the state distribution function. Unlike EKF and UKF, particle filters do not require the Gaussian assumptions.

Bayesian Filtering: From Kalman Filters to Particle Filters, and Beyond, by Zhe Chen

