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Objective

Sequentially estimate on-line the states of a system as it changes over
time using observations that are corrupted with noise.
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Problem Statement

Given State-Space Equations

~xk = fk (~xk−1, ~wk−1) (1)

~zk = hk (~xk ,~vk ) (2)
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Problem Statement

Given State-Space Equations

~xk = fk (~xk−1, ~wk−1) (1)

(n × 1) state vector at time k

~zk = hk (~xk ,~vk ) (2)

(m × 1) measurement vector at time k
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Problem Statement

Given State-Space Equations

~xk = fk (~xk−1, ~wk−1) (1)

Possibly non-linear function,
fk : Rn ×R

nw 7→ R
n

~zk = hk (~xk ,~vk ) (2)

Possibly non-linear function,
hk : Rm ×R

nv 7→ R
m
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Problem Statement

Given State-Space Equations

~xk = fk (~xk−1, ~wk−1) (1)

i.i.d state noise

~zk = hk (~xk ,~vk ) (2)

i.i.d measurement noise
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Problem Statement

Given State-Space Equations

~xk = fk (~xk−1, ~wk−1) (1)

~zk = hk (~xk ,~vk ) (2)

The state process is Markov chain, i.e.,
p(~xk |~x1, . . . ,~xk−1) = p(~xk |~xk−1) and the distribution of~zk conditional
on the state ~xk is independent of previous state and measurement
values, i.e., p(~zk |~x1:k ,~z1:k−1) = p(~zk |~xk )
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Problem Statement

Objective

Probabilistically estimate ~xk using previous measurement~z1:k . In
other words, construct the pdf p(~xk |~z1:k ).
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Problem Statement

Objective

Probabilistically estimate ~xk using previous measurement~z1:k . In
other words, construct the pdf p(~xk |~z1:k ).

Optimal MMSE Estimate

E{‖~xk − ~̂xk‖
2} =

∫

‖~xk − ~̂xk‖
2p(~xk |~z1:k )d~xk (3)

in other words find the conditional mean

~̂xk = E{~xk |~z1:k} =
∫

~xkp(~xk |~z1:k )d~xk (4)
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Recursive Bayesian Estimation

Prediction Stage

p(~xk |~z1:k−1) =
∫

p(~xk |~xk−1) p(~xk−1|~z1:k−1) d~xk−1 (5)
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Recursive Bayesian Estimation

Prediction Stage

p(~xk |~z1:k−1) =
∫

p(~xk |~xk−1) p(~xk−1|~z1:k−1) d~xk−1 (5)

defined using the state equation
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Recursive Bayesian Estimation

Prediction Stage

p(~xk |~z1:k−1) =
∫

p(~xk |~xk−1) p(~xk−1|~z1:k−1) d~xk−1 (5)

Assumed available from previous iteration
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Recursive Bayesian Estimation

Update Stage

Using Bayes’ Rule

p(~xk |~z1:k ) =
p(~zk |~xk ) p(~xk |~z1:k−1)

p(~zk |~z1:k−1)
(6)
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Recursive Bayesian Estimation

Update Stage

Using Bayes’ Rule

p(~xk |~z1:k ) =
p(~zk |~xk ) p(~xk |~z1:k−1)

p(~zk |~z1:k−1)
(6)

posterior
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Recursive Bayesian Estimation

Update Stage

Using Bayes’ Rule

p(~xk |~z1:k ) =
p(~zk |~xk ) p(~xk |~z1:k−1)

p(~zk |~z1:k−1)
(6)

likelihood: defined by the measurement equation
and the statistics of the measurement noise ~vk
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Recursive Bayesian Estimation

Update Stage

Using Bayes’ Rule

p(~xk |~z1:k ) =
p(~zk |~xk ) p(~xk |~z1:k−1)

p(~zk |~z1:k−1)
(6)

prior: defined by the state equation
and the statistics of the state noise ~wk−1
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Recursive Bayesian Estimation

Update Stage

Using Bayes’ Rule

p(~xk |~z1:k ) =
p(~zk |~xk ) p(~xk |~z1:k−1)

p(~zk |~z1:k−1)
(6)

evidence =
∫

p(~zk |~xk )p(~xk |~z1:k−1)d~xk

and depends on the likelihood function p(~zk |~xk )
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Recursive Bayesian Estimation

Limitations

1 Need to keep track of all previous states.
2 Generally can’t be determined analytically.
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Kalman Filter

Assumptions

~wk and ~vk are drawn from a Gaussian distribution, uncorrelated
have zero mean and statistically independent.

E{ ~wk~w
T
i } =

{

Qk i = k

0 i 6= k
(7)

E{ ~vk~v
T
i } =

{

Rk i = k

0 i 6= k
(8)

E{ ~wk~v
T
i } =

{

0 ∀i , k (9)
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Kalman Filter

Assumptions

fk and hk are both linear, e.g., the state-space system equations
may be written as

~xk = Φk−1 ~xk−1 + ~wk−1 (10)

~yk = Hk ~xk +~vk (11)
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Kalman Filter

Assumptions

fk and hk are both linear, e.g., the state-space system equations
may be written as

~xk = Φk−1 ~xk−1 + ~wk−1 (10)

~yk = Hk ~xk +~vk (11)

(n × n) transition matrix relating ~xk−1 to ~xk

Aly El-Osery (NMT) EE 570: Location and Navigation April 11, 2011 9 / 30



Kalman Filter

Assumptions

fk and hk are both linear, e.g., the state-space system equations
may be written as

~xk = Φk−1 ~xk−1 + ~wk−1 (10)

~yk = Hk ~xk +~vk (11)

(m × n) matrix provides noiseless connection between
measurement and state vectors
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Kalman Filter

pdf notation

p(~xk−1|~z1:k−1) = N (~xk−1; ~mk−1|k−1, Pk−1|k−1 ) (12)

p(~xk |~z1:k−1) = N (~xk ; ~mk |k−1,Pk |k−1) (13)

p(~xk |~z1:k ) = N (~xk ; ~mk |k , Pk |k ) (14)

where
~mk |k−1 = Φk−1~mk−1|k−1 (15)

Pk |k−1 = Qk−1 + Φk−1Pk−1|k−1Φ
T
k−1 (16)

~mk |k = ~mk |k−1 + Kk (~zk − Hk ~mk |k−1) (17)

Pk |k = Pk |k−1 − KkHkPk |k−1 (18)
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Kalman Filter

pdf notation

p(~xk−1|~z1:k−1) = N (~xk−1; ~mk−1|k−1, Pk−1|k−1 ) (12)

p(~xk |~z1:k−1) = N (~xk ; ~mk |k−1,Pk |k−1) (13)

p(~xk |~z1:k ) = N (~xk ; ~mk |k , Pk |k ) (14)

where
~mk |k−1 = Φk−1~mk−1|k−1 (15)

Pk |k−1 = Qk−1 + Φk−1Pk−1|k−1Φ
T
k−1 (16)

~mk |k = ~mk |k−1 + Kk (~zk − Hk ~mk |k−1) (17)

Pk |k = Pk |k−1 − KkHkPk |k−1 (18)

a priori error covariance (E{(~̂xk−1|k−1 −~xk−1)(~̂xk−1|k−1 −~xk−1)
T }).

Diagonal terms are the variances in the state estimates
off-diagonal show correlation between the errors in the different states
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Kalman Filter

pdf notation

p(~xk−1|~z1:k−1) = N (~xk−1; ~mk−1|k−1, Pk−1|k−1 ) (12)

p(~xk |~z1:k−1) = N (~xk ; ~mk |k−1,Pk |k−1) (13)

p(~xk |~z1:k ) = N (~xk ; ~mk |k , Pk |k ) (14)

where
~mk |k−1 = Φk−1~mk−1|k−1 (15)

Pk |k−1 = Qk−1 + Φk−1Pk−1|k−1Φ
T
k−1 (16)

~mk |k = ~mk |k−1 + Kk (~zk − Hk ~mk |k−1) (17)

Pk |k = Pk |k−1 − KkHkPk |k−1 (18)

posterior error covariance (E{(~̂xk |k −~xk )(~̂xk |k −~xk )
T })
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Kalman Filter

State-Space Equations

~̂xk |k−1 = Φk−1~̂xk−1|k−1 (19)

Pk |k−1 = Qk−1 + Φk−1Pk−1|k−1Φ
T
k−1 (20)

~̂xk |k = ~̂xk |k−1 + Kk (~zk − Hk~̂xk |k−1) (21)

Pk |k = Pk |k−1(I − KkHkPk |k−1) (22)

Aly El-Osery (NMT) EE 570: Location and Navigation April 11, 2011 11 / 30



Kalman Filter

State-Space Equations

~̂xk |k−1 = Φk−1~̂xk−1|k−1 (19)

Pk |k−1 = Qk−1 + Φk−1Pk−1|k−1Φ
T
k−1 (20)

~̂xk |k = ~̂xk |k−1 + Kk (~zk − Hk~̂xk |k−1) (21)

Pk |k = Pk |k−1(I − KkHkPk |k−1) (22)

(n × m) Kalman gain
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Kalman Filter

State-Space Equations

~̂xk |k−1 = Φk−1~̂xk−1|k−1 (19)

Pk |k−1 = Qk−1 + Φk−1Pk−1|k−1Φ
T
k−1 (20)

~̂xk |k = ~̂xk |k−1 + Kk (~zk − Hk~̂xk |k−1) (21)

Pk |k = Pk |k−1(I − KkHkPk |k−1) (22)

Measurement innovation

Aly El-Osery (NMT) EE 570: Location and Navigation April 11, 2011 11 / 30



Kalman Filter

Kalman Gain

Kk = Pk |k−1HT
k ( HkPk |k−1HT

k + Rk )−1 (23)
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Kalman Filter

Kalman Gain

Kk = Pk |k−1HT
k ( HkPk |k−1HT

k + Rk )−1 (23)

Covariance of the innovation term
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Kalman Filter

Kalman filter data flow

Initial estimate (~̂x0 and P0)
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Kalman Filter

Kalman filter data flow

Initial estimate (~̂x0 and P0)

Compute Kalman gain
Kk = Pk |k−1HT

k (Hk Pk |k−1HT
k + Rk )

−1
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Kalman Filter

Kalman filter data flow

Initial estimate (~̂x0 and P0)

Compute Kalman gain
Kk = Pk |k−1HT

k (Hk Pk |k−1HT
k + Rk )

−1

Update estimate with measurement ~zk
~̂xk |k = ~̂xk |k−1 + Kk (~zk − Hk~̂xk |k−1)
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Kalman Filter

Kalman filter data flow

Initial estimate (~̂x0 and P0)

Compute Kalman gain
Kk = Pk |k−1HT

k (Hk Pk |k−1HT
k + Rk )

−1

Update estimate with measurement ~zk
~̂xk |k = ~̂xk |k−1 + Kk (~zk − Hk~̂xk |k−1)

Update error covariance
Pk |k = Pk |k−1 − Kk Hk Pk |k−1
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Kalman Filter

Kalman filter data flow

Initial estimate (~̂x0 and P0)

Compute Kalman gain
Kk = Pk |k−1HT

k (Hk Pk |k−1HT
k + Rk )

−1

Update estimate with measurement ~zk
~̂xk |k = ~̂xk |k−1 + Kk (~zk − Hk~̂xk |k−1)

Update error covariance
Pk |k = Pk |k−1 − Kk Hk Pk |k−1

Project ahead
~̂xk |k−1 = Φk−1~̂xk−1|k−1

Pk |k−1 = Qk−1 + Φk−1Pk−1|k−1Φ
T
k−1

k = k + 1
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Kalman Filter

Kalman filter data flow

Initial estimate (~̂x0 and P0)

Compute Kalman gain
Kk = Pk |k−1HT

k (Hk Pk |k−1HT
k + Rk )

−1

Update estimate with measurement ~zk
~̂xk |k = ~̂xk |k−1 + Kk (~zk − Hk~̂xk |k−1)

Update error covariance
Pk |k = Pk |k−1 − Kk Hk Pk |k−1

Project ahead
~̂xk |k−1 = Φk−1~̂xk−1|k−1

Pk |k−1 = Qk−1 + Φk−1Pk−1|k−1Φ
T
k−1

k = k + 1
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Kalman Filter

Observability

The system is observable if the observability matrix

O(k) =











H(k − n + 1)
H(k − n − 2)Φ(k − n + 1)

...
H(k)Φ(k − 1) . . . Φ(k − n + 1)











(24)

where n is the number of states, has a rank of n. The rank of O is a
binary indicator and does not provide a measure of how close the
system is to being unobservable, hence, is prone to numerical
ill-conditioning.
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Kalman Filter

A Better Observability Measure

In addition to the computation of the rank of O(k), compute the
Singular Value Decomposition (SVD) of O(k) as

O = UΣV ∗ (25)

and observe the diagonal values of the matrix Σ. Using this approach it
is possible to monitor the variations in the system observability due to
changes in system dynamics.
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Kalman Filter

Remarks

Kalman filter is optimal under the aforementioned assumptions,

and it is also an unbiased and minimum variance estimate.

If the Gaussian assumptions is not true, Kalman filter is biased
and not minimum variance.

Observability is dynamics dependent.

The error covariance update may be implemented using the
Joseph form which provides a more stable solution due to the
guaranteed symmetry.

Pk |k = (I − K kHk )Pk |k−1 (I − K kHk )
T + K kRkK T

k (26)
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Kalman Filter

System Model

~̇x(t) = F(t)~x(t) + G(t)~w(t) (27)

To obtain the state vector estimate ~̂x(t)

E{~̇x(t)} =
∂

∂t
~̂x(t) = F(t)~̂x(t) (28)

Solving the above equation over the interval t − τs, t

~̂x(t) = e
(

∫ t
t−τs

F(t ′)dt ′
)

~̂x(t − τs) (29)

where Fk−1 is the average of F at times t and t − τs.
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Kalman Filter

System Model Discretization

As shown in the Kalman filter equations the state vector estimate is
given by

~̂xk |k−1 = Φk−1~̂xk−1|k−1

Therefore,
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Kalman Filter

System Model Discretization

As shown in the Kalman filter equations the state vector estimate is
given by

~̂xk |k−1 = Φk−1~̂xk−1|k−1

Therefore,

Φk−1 = eFk−1τs ≈ I + Fk−1τs (30)

where Fk−1 is the average of F at times t and t − τs, and first order
approximation is used.
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Kalman Filter

Discrete Covariance Matrix Q k

The solution to (27) is

~xk = Φk−1~xk−1 +
∫ t

t−τs

eFk−1(t−η)Gk−1~w(η)dη (31)

where Gk−1 is the average of G at times t and t − τs. Now let’s look at
the error covariance matrix

Pk |k−1 = E{(~̂xk |k−1 −~xk )(~̂xk |k−1 −~xk )
T } (32)

where

~̂xk |k−1 −~xk = Φk−1(~̂xk−1|k−1 −~xk )−
∫ t

t−τs

eFk−1(t−η)Gk−1~w(η)dη

(33)
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Kalman Filter

Discrete Covariance Matrix Q k (cont.)

Since the state estimate errors and the system noise ~w(t) are
uncorrelated

Pk |k−1 =Φk−1Pk−1|k−1Φ
T
k−1+

E

{

∫∫ t

t−τs

eFk−1(t−η)Gk−1~w(η)~wT (ζ)GT
k−1eFT

k−1(t−ζ)dηdζ

}

=Φk−1Pk−1|k−1Φ
T
k−1+

∫∫ t

t−τs

eFk−1(t−η)Gk−1E{~w(η)~wT (ζ)}GT
k−1eFT

k−1(t−ζ)dηdζ

=Φk−1Pk−1|k−1Φ
T
k−1 + Qk−1

(34)
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Kalman Filter

Discrete Covariance Matrix Q k (cont.)

Assuming white noise, small time step, G is constant over the
integration period, and the trapezoidal integration

Qk−1 ≈
1
2

[

Φk−1Gk−1Q(tk−1)GT
k−1Φ

T
k−1 + Gk−1Q(tk−1)GT

k−1

]

τs

(35)

where
E{~w(η)~wT (ζ)} = Q(η)δ(η − ζ) (36)
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Extended Kalman Filter (EKF)

Linearized System

Fk =
∂f(~x)

∂~x

∣

∣

∣

∣

~x=~̂xk |k−1

, Hk =
∂h(~x)

∂~x

∣

∣

∣

∣

~x=~̂xk |k−1

(37)

where

∂f(~x)
∂~x

=









∂f1
∂x1

∂f1
∂x2

· · ·
∂f2
∂x1

∂f2
∂x2

· · ·
...

. . .
...









,
∂h(~x)

∂~x
=









∂h1
∂x1

∂h1
∂x2

· · ·
∂h2
∂x1

∂h2
∂x2

· · ·
...

. . .
...









(38)
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Example

First Order Markov Noise

State Equation

ṅ(t) = −
1
Tc

n(t) + w(t) (39)

Autocorrelation Function

E{n(t)(n(t + τ)} = σ2e−|τ|/Tc (40)

where
E{w(t)w(t + τ)} = Q(t)δ(t − τ) (41)

Q(t) =
2σ2

Tc
(42)

and Tc is the correlation time.
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Example

Discrete First Order Markov Noise

State Equation

nk = e− 1
Tc

τsnk−1 + wk−1 (43)

System Covariance Matrix

Q = σ2[1 − e− 2
Tc

τs ] (44)
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Example

Autocorrelation of 1st order Markov

τ

Rn(τ) = σ2e−|τ|/Tc

σ2

e

σ2

Tc
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Example

Small Correlation Time Tc = 0.01

τ

Rn(τ)
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Example

Small Correlation Time Tc = 0.01

τ

Rn(τ)

-3

-2

-1

0

1

2

3

0 0.2 0.4 0.6 0.8 1

n(
t)

Time (sec)

Measured Actual Estimated
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Example

Larger Correlation Time Tc = 0.1

τ

Rn(τ)
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Example

Larger Correlation Time Tc = 0.1

τ

Rn(τ)

-3

-2

-1

0

1

2

3

0 0.2 0.4 0.6 0.8 1

n(
t)

Time (sec)

Measured Actual Estimated

Aly El-Osery (NMT) EE 570: Location and Navigation April 11, 2011 27 / 30



Other Solutions

Unscented Kalman Filter (UKF)

Propagates carefully chosen sample points (using unscented
transformation) through the true non-linear system, and therefore
captures the posterior mean and covariance accurately to the second
order.
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Other Solutions

Particle Filter

A Monte Carlo based method. It allows for a complete representation
of the state distribution function. Unlike EKF and UKF, particle filters
do not require the Gaussian assumptions.
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