Lecture Gyro and Accel Noise Characteristics

EE 570: Location and Navigation

Lecture Notes Update on November 15, 2011

Aly El-Osery, Electrical Engineering Dept., New Mexico Tech

.1

.2

.3

.4

1 Allan Variance

Allan Variance

- 1. Divide your N-point data sequence into adjacent windows of size $n = 1, 2, 4, 8, \dots, M \le N/2$.
- 2. For every n generate the sequence

$$y_j(n) = \frac{x_{nj} + x_{nj+1} + \dots + x_{nj+n-1}}{n}, \quad j = 0, 1, \dots, \left[\frac{N}{n}\right] - 1 \tag{1}$$

3. Plot log-log of the Allan deviation which is square root of

$$\sigma_{Allan}^2(nT_s) = \frac{1}{2(N-1)} \sum_{j=1}^{N-1} (y_j - y_{j-1})^2$$
(2)

versus averaging time $\tau = nT_s$

2 Gyro Noise Characteristics

Gyro Constant Bias ($^{\circ}/h$)

A constant in the output of a gyro in the absence of rotation, in $^{\circ}/h$.

Error Growth

Linearly growing error in the angle domain of εt .

Model

Random constant.

Gyro Integrated White Noise

Assuming the rectangular rule is used for integration, a sampling period of T_s and a time span of nT_s .

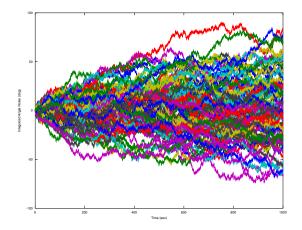
$$\int_{0}^{t} \varepsilon(\tau) d\tau = T_{s} \sum_{i=1}^{n} \varepsilon(t_{i})$$
(3)

since $\mathbb{E}[\varepsilon(t_i)] = 0$ and $Cov(\varepsilon(t_i), \varepsilon(t_j)) = 0$ for all $i \neq j$, $Var[\varepsilon(t_i)] = \sigma^2$

$$\mathbb{E}\left[\int_0^t \varepsilon(\tau) d\tau\right] = T_s n \mathbb{E}[\varepsilon(t_i)] = 0, \forall i$$
(4)

$$Var\left[\int_0^t \varepsilon(\tau)d\tau\right] = T_s^2 n Var[\varepsilon(t_i)] = T_s t \sigma^2, \forall i$$
(5)

Gyro Integrated White Noise



Angle Random Walk (° / \sqrt{h})

Integrated noise resulted in zero-mean random walk with standard deviation that grows with time as

$$\sigma_{\theta} = \sigma \sqrt{T_s t} \tag{6}$$

.5

.6

.7

We define ARW as

$$ARW = \sigma_{\theta}(1) \qquad (^{\circ}/\sqrt{h}) \tag{7}$$

In terms of PSD

$$ARW(^{\circ}/\sqrt{h}) = \frac{1}{60}\sqrt{PSD((^{\circ}/h)^2/Hz)}$$
(8)

Error Growth

ARW times root of the time in hours.

Model

White noise.

Gyro Bias Instability ($^{\circ}/h$)

- Due to flicker noise with spectrum 1/F.
- Results in random variation in the bias.
- Normally more noticeable at low frequencies.
- At high frequencies, white noise is more dominant.

Error Growth

Variance grows over time.

Model

First order Gauss-Markov.

2

3 Accel Noise Characteristics

Accel Constant Bias (μg)

A constant deviation in the accelerometer from the true value, in m/s^2 .

Error growth

Double integrating a constant bias error of ε results in a quadratically growing error in position of $\varepsilon t^2/2$.

Model

Random constant.

Velocity Random Walk $(m/s/\sqrt{h})$

Integrating accelerometer output containing white noise results in velocity random walk (VRW) $(m/s/\sqrt{h})$. Similar to development of ARW, if we double integrate white noise we get

$$\iint_{0}^{t} \varepsilon(\tau) d\tau d\tau = T_{s,sensor}^{2} \sum_{i=1}^{n} \sum_{j=1}^{i} \varepsilon(t_{j})$$
(9)

Error Growth

Computing the variance results in

$$\sigma_p \approx \sigma t^{(3/2)} \sqrt{\frac{T_s}{3}} \tag{10}$$

.8

.9

.10

.11

Model

White noise.

Accel Bias Stability (μg)

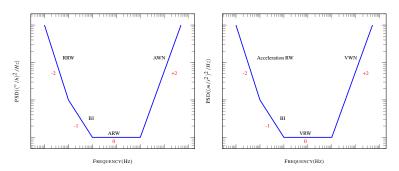
Error growth Grows as $t^{5/2}$.

Model

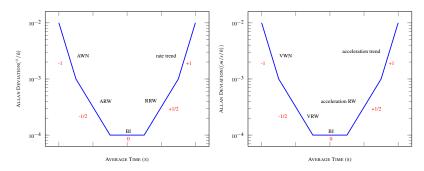
First order Gauss-Markov.

4 Using PSD and Allan Variance

One-sided PSD - Typical Slopes for rate and acceleration data



Allan Deviation - Typical Slopes for rate and acceleration data



Noise Parameters

Noise Type	AV $\sigma^2(au)$	PSD (2-sided)
Quantization Noise	$3\frac{\alpha^2}{\tau^2}$	$(2\pi f)^2 \alpha^2 T_s$
Angle/Velocity Random Walk	$\frac{\alpha^2}{\tau}$	$lpha^2$
Flicker Noise	$\frac{2\alpha^2\ln(2)}{\pi}$	$\frac{\alpha^2}{2\pi f}$
Angular Rate/Accel Random Walk	$\frac{\alpha^2 \tau}{3}$	$\frac{lpha^2}{(2\pi f)^2}$
Ramp Noise	$\frac{\alpha^2 \tau^2}{2}$	$\frac{\alpha^2}{(2\pi f)^3}$

.12

.13