EE 570: Location and Navigation Gyro and Accel Noise Characteristics

Aly El-Osery

Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA

November 15, 2011

EE 570: Location and Navigation

∃ ► < ∃ ►</p>

Allan Variance

Allan Variance

Divide your N-point data sequence into adjacent windows of size $n = 1, 2, 4, 8, ..., M \le N/2$.

For every n generate the sequence

$$y_j(n) = rac{x_{nj} + x_{nj+1} + \dots + x_{nj+n-1}}{n}, \quad j = 0, 1, \dots, \left[rac{N}{n}\right] - 1$$
 (1)

Plot log-log of the Allan deviation which is square root of

$$\sigma_{Allan}^{2}(nT_{s}) = \frac{1}{2(N-1)} \sum_{j=1}^{N-1} (y_{j} - y_{j-1})^{2}$$
(2)

versus averaging time $\tau = nT_s$

Gyro Constant Bias (°/*h*)

A constant in the output of a gyro in the absence of rotation, in $^{\circ}/h$.

Gyro Constant Bias (°/*h***)**

A constant in the output of a gyro in the absence of rotation, in $^{\circ}/h$.

Error Growth Linearly growing error in the angle domain of ϵt .

∃ ► < ∃ ►</p>

Gyro Constant Bias (°/*h***)**

A constant in the output of a gyro in the absence of rotation, in $^{\circ}/h$.

Error Growth Linearly growing error in the angle domain of ϵt .

Model Random constant.

A B F A B F

Gyro Integrated White Noise

Assuming the rectangular rule is used for integration, a sampling period of T_s and a time span of nT_s .

$$\int_0^t \epsilon(\tau) d\tau = T_s \sum_{i=1}^n \epsilon(t_i)$$
(3)

since $\mathbb{E}[\epsilon(t_i)] = 0$ and $Cov(\epsilon(t_i), \epsilon(t_j)) = 0$ for all $i \neq j$, $Var[\epsilon(t_i)] = \sigma^2$

$$\mathbb{E}\left[\int_{0}^{t} \epsilon(\tau) d\tau\right] = T_{s} n \mathbb{E}[\epsilon(t_{i})] = 0, \forall i$$
(4)

$$Var\left[\int_{0}^{t} \epsilon(\tau) d\tau\right] = T_{s}^{2} n Var[\epsilon(t_{i})] = T_{s} t \sigma^{2}, \forall i$$
(5)

イロト 不得 トイヨト イヨト

Gyro Integrated White Noise

November 15, 2011 5 / 13

<ロ> <同> <同> <同> <同> < 同>

Angle Random Walk (° / \sqrt{h})

Integrated noise resulted in zero-mean random walk with standard deviation that grows with time as

$$\sigma_{\theta} = \sigma \sqrt{T_s t} \tag{6}$$

We define ARW as

$$ARW = \sigma_{\theta}(1) \qquad (^{\circ}/\sqrt{h}) \tag{7}$$

In terms of PSD

$$ARW(^{\circ}/\sqrt{h}) = \frac{1}{60}\sqrt{PSD((^{\circ}/h)^2/Hz)}$$
(8)

Aly El-Osery (NMT)

12 N 4 12 N

Angle Random Walk (° / \sqrt{h})

Integrated noise resulted in zero-mean random walk with standard deviation that grows with time as

$$\sigma_{\theta} = \sigma \sqrt{T_{s}t} \tag{6}$$

We define ARW as

$$ARW = \sigma_{\theta}(1) \qquad (^{\circ}/\sqrt{h}) \tag{7}$$

In terms of PSD

$$ARW(^{\circ}/\sqrt{h}) = \frac{1}{60}\sqrt{PSD((^{\circ}/h)^2/Hz)}$$
(8)

Error Growth ARW times root of the time in hours.

Angle Random Walk (° / \sqrt{h})

Integrated noise resulted in zero-mean random walk with standard deviation that grows with time as

$$\sigma_{\theta} = \sigma \sqrt{T_s t} \tag{6}$$

We define ARW as

$$ARW = \sigma_{\theta}(1) \qquad (^{\circ}/\sqrt{h}) \tag{7}$$

In terms of PSD

$$ARW(^{\circ}/\sqrt{h}) = \frac{1}{60}\sqrt{PSD((^{\circ}/h)^2/Hz)}$$
(8)

Error Growth ARW times root of the time in hours.

Model

White noise.

Aly El-Osery (NMT)

Gyro Bias Instability (°/*h***)**

- Due to flicker noise with spectrum 1/F.
- Results in random variation in the bias.
- Normally more noticeable at low frequencies.
- At high frequencies, white noise is more dominant.

16 N A 16

Gyro Bias Instability (°/*h***)**

- Due to flicker noise with spectrum 1/F.
- Results in random variation in the bias.
- Normally more noticeable at low frequencies.
- At high frequencies, white noise is more dominant.

Error Growth

Variance grows over time.

16 N A 16

Gyro Bias Instability (°/*h***)**

- Due to flicker noise with spectrum 1/F.
- Results in random variation in the bias.
- Normally more noticeable at low frequencies.
- At high frequencies, white noise is more dominant.

Error Growth

Variance grows over time.

Model

First order Gauss-Markov.

16 N A 16

Accel Constant Bias (µg)

A constant deviation in the accelerometer from the true value, in m/s^2 .

Accel Constant Bias (µg)

A constant deviation in the accelerometer from the true value, in m/s^2 .

Error growth

Double integrating a constant bias error of ϵ results in a quadratically growing error in position of $\epsilon t^2/2$.

Accel Constant Bias (µg)

A constant deviation in the accelerometer from the true value, in m/s^2 .

Error growth

Double integrating a constant bias error of ϵ results in a quadratically growing error in position of $\epsilon t^2/2$.

Model

Random constant.

Velocity Random Walk $(m/s/\sqrt{h})$

Integrating accelerometer output containing white noise results in velocity random walk (VRW) $(m/s/\sqrt{h})$. Similar to development of ARW, if we double integrate white noise we get

$$\iint_{0}^{t} \epsilon(\tau) d\tau d\tau = T_{s,sensor}^{2} \sum_{i=1}^{n} \sum_{j=1}^{i} \epsilon(t_{j})$$
(9)

Velocity Random Walk ($m/s/\sqrt{h}$)

Integrating accelerometer output containing white noise results in velocity random walk (VRW) $(m/s/\sqrt{h})$. Similar to development of ARW, if we double integrate white noise we get

$$\iint_{0}^{t} \epsilon(\tau) d\tau d\tau = T_{s,sensor}^{2} \sum_{i=1}^{n} \sum_{j=1}^{i} \epsilon(t_{j})$$
(9)

Error Growth

Computing the variance results in

$$\sigma_{p} pprox \sigma t^{(3/2)} \sqrt{rac{T_{s}}{3}}$$

(10)

Velocity Random Walk ($m/s/\sqrt{h}$)

Integrating accelerometer output containing white noise results in velocity random walk (VRW) $(m/s/\sqrt{h})$. Similar to development of ARW, if we double integrate white noise we get

$$\iint_{0}^{t} \epsilon(\tau) d\tau d\tau = T_{s,sensor}^{2} \sum_{i=1}^{n} \sum_{j=1}^{i} \epsilon(t_{j})$$
(9)

Error Growth

Computing the variance results in

$$\sigma_{p} pprox \sigma t^{(3/2)} \sqrt{rac{T_{s}}{3}}$$

Model White noise.

Aly El-Osery (NMT)

(10)

Accel Bias Stability (µg)

Error growth

Grows as $t^{5/2}$.

Aly El-Osery (NMT)

EE 570: Location and Navigation

November 15, 2011 10 / 13

Accel Bias Stability (µg)

Error growth

Grows as $t^{5/2}$.

Model

First order Gauss-Markov.

Aly El-Osery (NMT)

EE 570: Location and Navigation

November 15, 2011 10 / 13

(4) (5) (4) (5)

< 6 b

Using PSD and Allan Variance

One-sided PSD - Typical Slopes for rate and acceleration data

▶ < ≧ ▶ < ≧ ▶ ≧ < つ < ○ November 15, 2011 11 / 13

< A

Using PSD and Allan Variance

Allan Deviation - Typical Slopes for rate and acceleration data

November 15, 2011 12 / 13

Noise Parameters

Noise Type	AV $\sigma^2(\tau)$	PSD (2-sided)
Quantization Noise	$3\frac{\alpha^2}{\tau^2}$	$(2\pi f)^2 \alpha^2 T_s$
Angle/Velocity Random Walk	$\frac{\alpha^2}{\tau}$	α ²
Flicker Noise	$\frac{2\alpha^2\ln(2)}{\pi}$	$\frac{\alpha^2}{2\pi f}$
Angular Rate/Accel Random Walk	$\frac{\alpha^2 \tau}{3}$	$\frac{\alpha^2}{(2\pi f)^2}$
Ramp Noise	$\frac{\alpha^2 \tau^2}{2}$	$\frac{\alpha^2}{(2\pi f)^3}$

2