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The purpose is to estimate the distribution of power in a signal. Unfortunately, truth and what is

practical cause a problem.

Truth

• Infinitely long.
• Continuous in time and value.
• Provides true distribution of power.

Practice

• Finite length.
• Discrete in time and value.
• Only approximation of distribution of power.

Let’s make it more interesting
The signal is stochastic in nature.
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1 Review Material

1.1 Signal Classification

Assume the voltage across a resistorR is e(t) and is producing a currenti(t). The instantaneous
power per ohm isp(t) = e(t)i(t)/R = i2(t).

Total Energy

E = lim
T→∞

∫ T

−T
i2(t)dt (1)

Average Power

P = lim
T→∞

1
2T

∫ T

−T
i2(t)dt (2)
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Arbitrary signal x(t)

Total Normalized Energy

E , lim
T→∞

∫ T

−T
|x(t)|2dt =

∫ ∞

−∞
|x(t)|2dt (3)

Normalized Power

P , lim
T→∞

1
2T

∫ T

−T
|x(t)|2dt (4)

• x(t) is anenergy signal iff 0 < E < ∞, so thatP = 0.
• x(t) is apower signal iff 0 < P < ∞, so thatE = ∞.
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1.2 Time Averages

For Energy Signals

φ (τ) =
∫ ∞

−∞
x(t)x(t + τ)dt (5)

Provides a measure of similarity or coherence between a signal and a delayed version of itself.
Note thatφ (0) = E

For Power Signals

R(τ) = lim
T→∞

1
2T

∫ T

−T
x(t)x(t + τ)dt (6)

For Periodic Signals

R(τ) =
1
T0

∫

T0

x(t)x(t + τ)dt (7)
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1.3 Frequency Domain

Energy Spectral Density

Rayleigh’s Energy Theorem or Parseval’s theorem

E =
∫ ∞

−∞
|x(t)|2dt =

∫ ∞

−∞
|X(F)|2dF (8)

Energy Spectral Density
G(F) , |X(F)|2 (9)

with units ofvolts2-sec2 or, if considered on a per-ohm basis,watts-sec/Hz=joules/Hz
.6

Power Spectral Density

P =
∫ ∞

−∞
S(F)dF = lim

T→∞

1
2T

∫ T

−T
|x(t)|2dt (10)

where we defineS(F) as the power spectral density with units of watts/Hz. Note that R(0) =
∫ ∞
−∞ S(F)dF . .7
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2 Random Signals and Noise

Basic Definitions

• Define anexperiment with randomoutcome.
• Mapping of the outcome to a variable⇒ random variable.
• Mapping of the outcome to a function⇒ random function.
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2.1 Statistical Averages

Probability (Cumulative) Distribution Function (cdf)

FX (x) = probability that X ≤ x = P(X ≤ x) (11)
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Probability Density Function (pdf)

fX (x) =
dFX (x)

dx
(12)

and

P(x1 < X ≤ x2) = FX (x2)−FX (x1) =
∫ x2

x1

fX (x)dx (13)

x1 x2

µ

P(x1 < X < x2)
(Compute Area)

PDF
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Gaussian Distribution

1

σ
√

2π
exp

(−x2

2σ2

)

x

−3σ −2σ −σ σ 2σ 3σ

σ
34%34%

14%14% 2%2% 0.1%0.1%
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PDF of White Noise
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Mean of a Discrete RV

X̄ = E[X ] =
M

∑
j=1

x jPj (14)

Mean of a Continuous RV
X̄ = E[X ] =

∫ ∞

−∞
x fX (x)dx (15)

Variance of a RV
σ2

X , E
{

[X−E(X)]2
}

= E[X2]−E
2[X ] (16)
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Given a two random variablesX andY .

Covariance
µXY = E{[X− x̄][Y − Ȳ ]}= E[XY ]−E[X ]E[Y ] (17)

Correlation Coefficient
ρXY =

µXY

σX σY
(18)

Autocorrelation
ΓX (τ) = E[X(t)X(t + τ)] (19)
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2.2 Stochastic Processes

Terminology
See Figure1

• X(t,ζi): sample function.
• The governing experiment: random or stochastic process.
• All sample functions: ensemble.
• X(t j,ζ ): random variable.
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Strict Sense Stationarity

If the joint pdfs depend only on the time difference regardless of the time origin, then the random
process is known asstationary.

For stationary process means and variances are independentof time and the covariance depends
only on the time difference. .16
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Figure 1: Sample functions of a random process

Wide Sense Stationarity

If the joint pdfs depends on the time difference but the mean and variances are time-independent,
then the random process is known aswide-sense-stationary.
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Ergodicity

If the time statistics equals ensemble statistics, then therandom process is known asergodic.
.18

2.3 Correlation and Power Spectral Density

Power Spectral Density
Given a sample functionX(t,ζi) of a random process, we first obtain the power spectral density

by means of the Fourier transform of a truncated versionXT (t,ζi) defined as

XT (t,ζi) =

{

X(t,ζi), |t|< 1
2T

0, otherwise
(20)

The Fourier transform ofXT (t,ζi) is

F{XT (t,ζi)}=
∫ T/2

−T/2
X(t,ζi)e

j2πFtdt (21)

.19

Power Spectral Density of a Random Process
The energy spectral density is|F{XT (t,ζi)}|2 and the average power density over theT is

|F{XT (t,ζi)}|2/T . Since we have many sample functions, it is intuitive to takethe ensemble aver-
age asT → ∞, therefor the power spectral density,SX (F) is given by

SX (F) = lim
T→∞

|F{XT (t,ζi)}|2
T

(22)

.20

Wiener-Khinchine Theorem

SX (F) = lim
T→∞

∫ 2T

−2T

(

1− |u|
2T

)

ΓX (u)e
− jΩudu (23)

asT → ∞
S(F)

F←→ Γ(τ) (24)

.21
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2.4 Input-Output Relationship of Linear Systems

H(F)
x(t) y(t)

SY (F) = |H(F)|2SX (F) (25)
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3 Discrete Signals and Systems

Big Picture

t

T

F

1/T

Ts

t F

Fs = 1/Ts

t

To

F

∆F = 1/To

CTFT

Sample

DTFT Sample

IDFT
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Sampling Remarks

• Must sample more than twice bandwidth to avoid aliasing.
• FFT represents a periodic version of the time domain signal→ could have time domain alias-

ing.
• Number of points in FFT is the same as number of points in time domain signal.

.24

4 Power Spectral Density

Obtaining PSD for Discrete Signals

What we want is
ΓX (τ) = E[X(t)X(t + τ)] C T FT−−−−−→ SX (F)

For infinitely long signals.

What we can compute is

γX (m) = E[X(n)X(n+m)]
DFT−−−−→ PX ( f )

For finite length signals.
.25
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What do we need in an estimate
As N→ ∞ and in the mean squared sense

Unbiased
Asymptotically the mean of the estimate approaches the truepower.

Variance
Variance of the estimate approaches zero.

Resulting in a consistent estimate of the power spectrum. .26

Possible PSD Options

Periodogram
computed using 1/N times the magnitude squared of the FFT

lim
N→∞

E[PX ( f )] = SX ( f )

lim
N→∞

var[PX ( f )] = S2
X ( f )

Welch Method
computed by segmenting the data (allowing overlaps), windowing the data in each segment then
computing the average of the resultant priodogram

E[PX ( f )] =
1

2πMU
SX ( f )⊛W ( f )

var[PX ( f )] ≈ 9
8L

S2
X ( f )

.27

Welch Method
Assuming data lengthN, segment lengthM, Bartlett window, and 50% overlap

• FFT length =M = 1.28/∆ f = 1.28Fs/∆F
• Resulting number of segments =L = 2N

M
• Length of data collected in sec. =1.28L

2∆F
.28

pwelch Function

[Pxx,f] = pwelch(x,window,noverlap,...
nfft,fs,’range’)

You can use[] in fields that you want the default to be used. .29

pwelch Function - WGN signal

Fs = 1000;
x = sqrt(0.1*Fs)*randn(1,100000);
[Pxx,f] = pwelch(x,1024,[],[],Fs,’onesided’);
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• Variance to high.
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pwelch Function - WGN signal

[Pxx,f] = pwelch(x,128,[],[],Fs,’onesided’)
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• Reduced window size.
• Variance is now smaller. .31

pwelch Function - cos + WGN signal

Fs = 100; t = 0:1/Fs:5;
x = cos(2*pi*10*t)+cos(2*pi*11*t)+...

sqrt(0.1*Fs)*randn(1,length(t));
[Pxx,f] = pwelch(x,1024,[],[],Fs,’onesided’);
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• Window larger than length of data.
• Frequency components can’t be resolved.
• Variance high.

.32
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pwelch Function - cos + WGN signal

Fs = 100; t = 0:1/Fs:5;
x = cos(2*pi*10*t)+cos(2*pi*11*t)+...

sqrt(0.1*Fs)*randn(1,length(t));
[Pxx,f] = pwelch(x,1024,[],4096,Fs,’onesided’);
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• As expected increasingnFFT does not help.
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pwelch Function - cos + WGN signal

Fs = 100; t = 0:1/Fs:5;
x = cos(2*pi*10*t)+cos(2*pi*11*t)+...

sqrt(0.1*Fs)*randn(1,length(t));
[Pxx,f] = pwelch(x,128,[],4096,Fs,’onesided’);
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• Decreasing the window size decreases the variance.
• Still can’t resolve the two frequencies.
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pwelch Function - cos + WGN signal

Fs = 100; t = 0:1/Fs:50;
x = cos(2*pi*10*t)+cos(2*pi*11*t)+...

sqrt(0.1*Fs)*randn(1,length(t));
[Pxx,f] = pwelch(x,128,[],4096,Fs,’onesided’);
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• Length of data sequence must be increased.
• Still can’t resolve the two frequencies as the window size istoo small.
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pwelch Function - cos + WGN signal

Fs = 100; t = 0:1/Fs:50;
x = cos(2*pi*10*t)+cos(2*pi*11*t)+...

sqrt(0.1*Fs)*randn(1,length(t));
[Pxx,f] = pwelch(x,256,[],4096,Fs,’onesided’);
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• Now we can resolve the two frequencies.
.36

Spectral Estimation - Remarks

• The length of the data sequence determines the maximum resolution that can be observed.
• Increasing the window length of each segment in the data increases the resolution.
• Decreasing the window length of each segment in the data decreases the variance of the esti-

mate.
• nFFT only affects the amount of details shown and not the resolution.

.37

10


	Review Material
	Signal Classification
	Time Averages
	Frequency Domain

	Random Signals and Noise
	Statistical Averages
	Stochastic Processes
	Correlation and Power Spectral Density
	Input-Output Relationship of Linear Systems

	Discrete Signals and Systems
	Power Spectral Density

