Firefighting Robot

The Caveman

Bryana Baird
Evan Elizondo
Collin Smith

New Mexico Tech
Junior Design
5/6/14

Table Of Contents

List of Figures 6
List of Tables 7
Abstract 7
Introduction 7
Design Overview 9-13
3.1 Goals 9
3.2 Constraints 9
3.3 System Overview 9-13
3.1.1 Summary 9
3.1.2 Search Algorithm 10
3.1.3 Object Avoidance Algorithm 1
3.1.4 Flame SEarch Algorithm 12
3.1.5 Flame Extinugishing 13
Subsystems 14-27
4.1 Locomotion 14-16
4.1.1 Design 14
4.1.2 Components 14
4.1.3 Implementation 16
4.1.4 Problems 16
4.1.5 Solutions 16
4.2 Obstacle Detection 17-19
4.2.1 Design 17
4.2.2 Components 17

4.2.3 Implementation 18
4.2.4 Problems 18
4.2.5 Solutions 19
4.3 Fire Detection 20-22
4.3.1 Design 20
4.3.2 Components 21
4.3.3 Implementation 22
4.3.4 Problems 22
4.3.5 Solutions 22
4.4 Fire Extinguisher 23-23
4.4.1 Design 23
4.4.2 Components 23
4.4.3 Implementation 24
4.4.4 Problems 24
4.4.5 Solutions 24
4.5 Line Sensing 25-29
4.5.1 Design 25
4.5.2 Components 26
4.5.3 Implementation 26
4.5.4 Problems 29
4.5.5 Solutions 29
4.6 Microcontroller 30
4.6.1 Design 30
4.6.2 Components 30
4.6.3 Implementation 30

4.6.4 Problems 30
4.6.5 Solutions 30
5 Structure 31-32
5.1 Design 31
5.2 Implementation 31
5.3 Problems 32
5.4 Solutions 32
6 Performance 32-33
6.1 Individual Subsystems 32
6.2 Integrated System 33
6.3 At RoboRave 33
7 Budget 34
7.1 Predicted 34
7.2 True 34
8 Schedule 35-36
8.1 Predicted 35
8.2 True 36
9 Conclusion 36
10 References 37
1 Appendix 38-60
11.1 Main Code 38
11.2 Navigation 45
11.3 IR Camera Code 53
11.4 Line Sensor Code 56
11.5 Object Avoidance Routines 57

11.6 Ultrasonic Sensor Code

59

List of Figures

Figure 3.3.1 Flow chart... 10
Figure 3.3.3 | Avoidance protocol when a... 1
Figure 3.3.4a | Robot detects flame... 12
Figure 3.3.4b | Robot orients itself... 13
Figure 4.1.1 Bottom view... 14
Figure 4.1.2 | Locomotion... 16
Figure 4.2.1 HC-SR04 Diagram... 17
Figure 4.2.2 | Placement of... 19
Figure 4.2.3 | Actual placement of.. 19
Figure 4.2.4a | Original Noisy... 20
Figure 4.2.4b | Signal after... 20
Figure 4.3.1 Wii Remote View... 21
Flgure 4.3.2 | Wii Remote View... 21
Figure 4.3.3 | Wii Remote External... 22
Filgure 4.4.1 Interface Circuitry... 23
Figure 4.4.2 | Fan with Custom.... 24
Figure 4.5.1 Light emitted... 25
Figure 4.5.2 | Circuitry for... 27
Figure 4.5.3 | Black line... 27
Figure 4.5.4 | Integrated reflection... 28
Figure 4.5.5 | Difference... 28
Figure 5.2.1 Top view top... 32
Figure 5.2.2 | Top view bottom... 32

List of Tables

Table 4.1.1 Motor specs... 15
Table 4.1.2 Encoder data... 17
Table 4.2.1 Distance as... 18
Table 7.1 Predicted budget... 34
Table 7.2 True budget... 35
Table 8.1 Predicted... 35
Table 8.2 True schedule... 36

1.0 Abstract

A robot was designed to autonomously navigate an 8'x12’ field circumscribed by a
white line in search of four candles. The objective was to extinguish all of the candles within
three minutes. In addition, the robot had to be able to navigate around obstacles within the
course, extinguish the candle within 8” of its base, and deal with sunlight. To accomplish
this, the robot had several subsystems: locomotion, obstacle detection, fire detection, fire
extinguishing, and line detection. Each of these subsystems functioned well, but still require
improvement. The robot was able to successfully extinguish all four candles on multiple
runs, but suffered problems with obstacle avoidance that caused it to not be successful all
of the time.

2.0 Introduction

The implemented robot known as “The Caveman” was created to perform set tasks
for the RoboRave International Firefighting competition. For the competition, several
constraints had to be met. The robot had to be capable of autonomously navigating an
8'x12’ field that was marked by white and black reflective tape. The robot needed to be
able to locate 4 lit candles within this area and extinguish them. However, in order to
extinguish them, the robot had to be within an 8” radius of the candle that was marked by a
white line. While trying to locate these candles, the robot, also, had to navigate a set of
obstacles. Lastly, all the subsystems needed to be capable of dealing with sporadic
sunlight that would be present on the field.

To fulfill these design requirements, several different subsystems were generated.
First, the robot needed to be capable of moving around. To fulfill this task, two direct
current motors were controlled by a microcontroller through a dual H-bridge motor
controller. As the robot moved around the field it, also, needed to avoid obstacles. This
was extremely important, therefore, five ultrasonic distance detectors were utilized for this
task. The ultrasonics sent pulses to the microcontroller that were proportional to the
distance the object was from the sensor. Next, the robot needed to be capable of locating
fire as it moved and dodged the obstacles. To do this, an infrared sensing Wii remote was
used. This remote was integrated with a microcontroller using an analog circuit. In order to
extinguish the fire, once detected, a small propeller was attached to a remote control car
motor. The fan was then controlled by the microcontroller through a power MOSFET circuit.
The next subsystem needed the ability to detect the lines around the candles and the
border of the field. To do this, a reflection detector circuit was created from analog
components. The detector gave an analog voltage that showed when it was over a dark
object or a white line.

3.0 Design Overview
3.1 Goals

The robot was constructed to compete in the firefighting challenge in RoboRave
International. The robot had to autonomously navigate a field to extinguish four candles.The
field was 8x12’ and surrounded by a white line with the candles randomly spaced
throughout. All of the candles had to be extinguished within 3 minutes. When these candles
were extinguished, the robot had to be within 8” of the candle’s base, the robot could not be
moving when the extinguishing device was active, and it could not bump the candle. In
addition to this, the candles were obscured by walls scattered throughout the course.

3.2 Constraints
Competing in RoboRave placed a few constraints on the way the way the robot
could be built. First, the robot base had to fit within a square base of 144 sq. in. In addition
to this, all components on the robot, purchased or donated, had to be within a total of
$1500. The final constraint was that all purchased components had to be within a total of
$325.

3.3 System Overview

3.3.1 Summary

The robot would randomly choose a direction of travel, and scan for a flame. It would
continue until it detected an object or a white line, whereafter it would then choose a new
direction to search. Once a candle was detected, the robot would orient itself in the
direction of a candle and travel toward it, then extinguish it. It would then choose a new
direction of travel to look for more flames. Ultrasonic sensors were used to gauge
distances, a Wii remote was used to locate flames, and encoders were used to determine
distances traveled. A flowchart of the decision making process can be seen in Fig 3.3.1.

Fig 3.3.1
Flowchart of Decision Making Processes

3.3.2 Search Algorithm

To navigate the field, a Monte Carlo approach was taken. A random direction was
chosen and traversed until the robot encountered an object or a white line. If it detected an
object, it would then chose a new direction based on the object avoidance algorithm
discussed in Sec. 3.3.3. If it encountered a white line, it would turn left randomly between 0
and 90 degrees. This limit ensured that it would attempt to traverse the map in a
counter-clockwise fashion while limiting its ability to double back on itself.

In addition to choosing random directions, it would stop traversing the field and spin
360 degrees searching for a candle at set intervals. This helped dramatically increase the
likelihood that a candle was detected. Through trial and error, the ideal interval was
estimated to be approximately 12 seconds based on our robot’s nominal speed. This was
used to help compensate for the Wii remote’s ability to only scan in one direction.

10

For future improvements, the authors would recommend traversing the border lines
in a counter-clockwise search. This deterministic approach would be an improvement over
a random search in several areas: decreased search time, increase probability of finding
all flames, and less problems with object avoidance. Occasionally, the robot would
accidentally navigate into a corner that also contained a candle, and lost a significant
amount of time trying random directions trying to escape.

Deterministic approaches also have drawbacks, however. If the robot loses sight of
the line, or wheel slippage occurs, it can be difficult to realign the robot in the correct
direction. Implementations of PID control for the motors, initial alignment of wheels when
building the base, and mapping algorithms become significantly more important when
trying to search deterministically.

3.3.3 Object Avoidance Algorithm

In order to avoid the objects, ultrasonic sensors were used to detect the distance to
the nearest obstacle. Five of these sensors were installed on the robot, each pointing a
different direction. This way, the direction of the object could be detected. When an object
was within a threshold distance for the robot, say 10 cm., it would turn away from the object
based on which ultrasonic detected the object.

If the front sensor detected the object, it would choose a new direction of travel. If the
sensors on the sides went off, it would rotate 10 degrees away from the object and
continue in the new direction of travel. If the middle sensors detected an object, it would turn
away 90 degrees from the object, travel forward a little ways, then reorient itself in the
original direction. In this way, the robot is able to continually search in a direction without
becoming trapped in a corner due to tight spacing of objects. Fig. 3.3.2 lllustrates the
different methods of avoiding objects.

T

o

Figiila Fig 133 Midde Sorsor Detection
Plus - Ukrasonic Deteciors

Grsary Plus: - Orjesct Dhaligted Trarskales 5 and conlifmes ir orging
Black Amcw - Criginal Cirection direxction

Ried Arriosy’ - By Dirgchion

N\

Fig 3 3 Zc Sida Baraor Dateclon Fig 333 Front Zensor Deledion

Rolates 10 degrees and cominues raveding Chocsas mandam dinscion of inawal

11

3.3.4 Flame Search Algorithm

A Wii remote was used to detect the flame. It outputs the coordinates of the flame
when it is detected. See Sec. 4.3.2 for further details of operation. While the robot was
moving about the field, it was continually searching for a flame by positioning the Wii
remote to the left. When one was detected, the robot would turn toward the flame, orient the
Wii remote towards the front, then use the coordinates to correct its direction as it drove
toward the flame. See Fig 3.3.3a for an illustration of the scanning process.

This was coupled with the object avoidance algorithm. If the robot was driving
toward a flame, but encountered an object along the way, it would attempt to avoid the
object, and then rescan to locate the candle. See Sec. 3.3.2 for further details about
obstacle avoidance.

Fig 3.3.4a.1 Initial Detection of Flame Fig 3.3.4a.2 Driving Detection of Flarme
Red Circle - Candle Wii remote is arented toward the front,
Trapezodd - Wi Remaote rabat turms loward candle and drivas
Black Arrow - Diraction of Travel forward

While the robot was trying to drive toward the flame, it would continually monitor the
position of the flame. If the flame was off-center, it would rotate until the flame was back in
the center of the field of view. This allowed the robot to correct for factors that caused the
robot to not drive straight, such as unbalanced motors or wheel slippage. A window of
allowable offset was used to determine when the robot should pause for reorientation. Fig
3.3.3b demonstrates its ability to correct its direction of travel.

12

Fig 3.3.4b.1 Top View Fig 3.3.4b.3 Top View

Trapezoid - Wi Remole Robol reorients boward candle
Red Cirde - Candie

m | | =

Fig 3.3.4b_2 Wii Remaote Wiew Fig 3.3.4b.4 Wii Remote View
Red Star - ON-Center Delected Rabat is rotated until flame is back
Flarme inside center region

Baox - Center Region

3.3.5 Flame Extinguishing

To extinguish the flame, three conditions must be met. The Wii remote must detect a
flame, line sensor must detect a white line, and the front ultrasonic sensor must detect an
object less than 8 inches away. Including both distance and line detection into the criteria to
execute the flame termination algorithm ensured that a fluctuation in either the line sensor
or the distance sensor did not prematurely exit the search routine. If the termination
algorithm was entered prematurely, the candle risked being extinguished outside of the 8”
minimum distance.

When all three of these conditions were met, the robot stopped, then, turned on its
fan for 0.75 seconds. If the Wii remote still detected a flame, it would rotate slightly in the
direction of the flame, and attempt to extinguish the flame again in a process similar to the
process show in Fig. 3.3.4b.

Due to the Wii remote’s range and capabilities, it is possible for two flames to be
detected simultaneously. See Sec. 4.3 for further details about the Wii remote’s abilities.
This potential event must be taken into consideration when extinguishing the candle. If one
of the candles is extinguished, the brightest IR spot will still exist. Therefore, when
monitoring when a candle is extinguished or not, the number of IR spots detected by the
Wii remote is monitored rather than the brightest IR spot.

13

4.0 Subsystems
4.1 Locomotion
4.1.1 Design
The movement of this robot is dependent on these three elements: the H-bridge, two
motors, and two ball caster wheels. The robot had a circular base, therefore, having four
motors would be inefficient. Both Fig 4.1.1 a. and 4.1.1 b. show how the motors and the
ball casters were attached to the bottom of the tier 1 base. The purpose of these
components, was to give this robot the ability to rotate 360 degrees in place.

Battam of the
Base

T_ >

— e

Fow

Botlom of
tha Basa.

Fig 4.1.1 a. Bathom View Fig 4.1.1 b. Anglad View

Black cincha - Castar Ball Casa Four rods support dusl bases. Ball
‘White Circle - Caster Bal casters balance mbat while
Rounded Rectanglke - DC Mobors rrcilarioed whesls drive il

4.1.2 Components

The robots movements are determined by the Locomotion subsystem. Therefore,
the first component of choice would be the motors, because they are the foundation for any
other elements built around them. There are many different types of motors: alternating
current (AC), direct current (DC), stepper, servos.... etc. The DC motor was the best option
for the robot because it optimized movement. The alternative stepper motor would not run
at a constant low voltage like the DC motor. While, servos would only rotate at 180 degrees
and the AC motors were too complicated. However, despite being the best to implement,
use of the DC motors still required a balance between torque and speed. The equation in
Eq 4.1.1 allowed for a decision on how much torque was required to move the weight of
the robot. The equation in Eq 4.1.2 helped determine the rotations per minute (rpm) or
speed the robot should move.

Torque = m-g-sin(0) - wheel radius Eq4.1.1

Rpm = Linear speed ~ wheel radius Eq4.1.2

14

Table 4.1.1
Motor specifications

Gear ratio: 19:1
Free-run speed @ 6V: 256 rpmt
Free-run current @ 6V: 250 mAl
Stall current @ 6V: 2500 mAl
Stall torque @ 6V: 42 oz-inl
Free-run speed @ 12V: 500 rpm

Free-run current @ 12V: 300 mA

Stall current @ 12V: 5000 mA
Stall torque @ 12V: 84 oz-in
Lead length: 11in

The gearhead motors of choice were the Pololu 37D x 64L mm as they allowed for
both enough torque and speed based off the specifications in Table 4.1.1. These motors
were convenient in other ways as well, since they came with encoders attached. The
encoders have two-channel Hall effect encoders used to sense the rotation of a magnetic
disk on a rear protrusion of the motor shaft. The quadrature encoder provides a resolution
of 64 counts per revolution of the motor shaft when counting both edges of both channels.
To compute the counts per revolution of the gearbox output, one would simply multiply the
gear ratio by 64. This results in 928 counts per revolution. The motor/encoder has six
color-coded, 11" (28 cm) leads terminated by a 1x6 female header with a 0.1" pitch.
Pololu, also, offered brackets, hubs, and wheels that were compatible with the motors.
These aluminum mounting hubs allowed for the mounting of custom wheels to 6 mm
diameter motor shafts.

The blue 80x10mm pair of wheels decreased the amount of torque provided by the
robot, but was still sufficient to move the robot. The hubs and wheel connected together
with six 4-40 screws. The gearmotor brackets allowed the motors to be mounted on the
robot easily. Each bracket included six M3 screws for securing the motors to the brackets.
They, also, feature fourteen mounting holes giving a variety of mounting options to the
bottom of the base. The ball caster kit used included a black ABS housing, a 1" diameter
plastic ball, three dowel pin rollers, two spacers 1/16" and 1/8" thick, and three #2 screw
sets. The spacers helped with adjustments, these will be discussed in Sec 5.2. The L298N
dual H-bridge motor driver helped determine the forward and reverse directionality of the
motors rapidly while protecting the motor and microcontroller.

4.1.3 Implementation

15

In order to move, the motors had to be powered directly with 6 volts. As the
microcontroller could only put out 3.3 volts, this had to be done through the H-bridge
controller. Using the H-bridge as a switch, the microcontroller could put out a low voltage
pulse, and still fully power the motors off of the 6 volt battery. The dual directionality of the
H-bridge allowed the motors to go in forward and reverse. Which, due to our design,
allowed the robot to go forward, reverse, or turn.

The encoders attached to the motors told the microcontroller how far the robot had
travelled or how much it had turned. There were problems with the encoders that will be
discussed in the section 4.1.4.

4.1.4 Problems

Very few problems were encountered with the motor system. It functioned as
intended when it was connected to the H-bridge. However, there were problems with the
encoders. They worked well, but the 928 counts per revolution occurred too quickly for the
microcontroller to catch regularly. In order to accurately measure distance, each of these
edges are needed.

4.1.5 Solutions

To solve the problem with the counts, a separate 74HC4040E ripple counter circuit
was designed to lower the resolution. This circuit dropped the number of counts to 1/4th its
original value: 232 counts per revolution. The outputs of the ripple counter were read into
the microcontroller as an 8 bit number. The ripple counter was then reset, and new distance
data was accumulated. The circuit can be seen in Fig 4.1.2.

Fig4.1.2
Locomotion and Distance Recording Circuitry

Once the communication between the microcontroller and the encoders was
working, data could be collected. The revolutions per second according to the voltage sent

16

to the motors can be seen in Table 4.1.2. The duty cycle (time spent high per cycle period)
was at 100% for all tests

Table 4.1.2
Encoder data according to voltage input
Voltage (100% Duty Cycle) | Rotations per Second

4.2 Obstacle Detection

4.2.1 Design

Obstacle detection was accomplished through ultrasonic range finders. Ultrasonic
sensors work through echolocation. They send pulses of sound and measure the time of
return. It then generates a pulse to send back to the microcontroller, the length of which
corresponds to the distance from the object. These pulses are not within the audible range;
the sensors, therefore, are largely immune to ambient background noise.

. HC-SR04 _—

Fig. 4.2.1
HC-SR04 Diagram

4.2.2 Components

The HC-SR04 ultrasonic was chosen because it is generally robust, and very easy
to integrate. Pulses are triggered by the “Trig Pin”, and the return pulses are received on
the “Echo Pin”. This makes it an ideal component to work with. Distances were able to be
accurately measured within 1 cm. Table 4.2.1 shows the data taken at different distances.
A picture of the ultrasonic sensor can be seen in Fig 4.2.1.

17

Table 4.2.1
Distance as determined by HC-SR04

Actual distance (cm) Sensor Distance (cm)
24 24
30 30
35 34
40 40
45 45
50 50
60 61
65 66
70 71

4.2.3 Implementation

Five ultrasonic sensors were placed around the front of the base. These each
pointed in a different direction to attempt to remove blind spots. Each sensor would cause
the robot to react differently (see Sec 3.3.2). The ultrasonics were mounted in a plexiglass
case to ensure that they were immobile, as well as to make them look nice. Fig 4.2.2
shows a diagram of ultrasonic sensors.

4.2.4 Problems

The ultrasonic sensors had three main problems: timing, viewing angles, and spikes
of data. The ultrasonic sensors would be fairly time consuming to read because they had to
wait for a sonic burst to be returned to the sensor, and then the pulse itself can be relatively
lengthy for objects far away. Since this process had to be repeated five times to read each
ultrasonic, it caused slight delays in executing the loop. These delays were not terribly long,
but were the slowest part of the program.

The viewing angle was another major issue. Due to their narrow viewing angle, the
ultrasonic sensors were not able to detect objects slightly offset to one side. This caused
some unanticipated blind spots to occur. This became a problem mostly when pursuing a
candle and being unable to determine when no forward progress was made toward the
candle.

Finally, sometimes the ultrasonic sensors would glitch and not detect an object.
These spikes in data were potentially dangerous, and could cause problems in the
avoidance protocol. Usually, these spikes in data indicated that there was not an object in
range. This would only be problematic when trying to be within 8” of the candle, so it did
matter as much. When the sensor indicated that there was an object when there wasn’t
one, this would cause the search algorithm to potentially miss a candle.

18

Fig 4.2.2a Top View Fig 4.2.2b Front View
Plus - Lllirasonic Sensors Lllirasonic sensors detect objects in the direction of
Orange Rectangles- Plexiglass case travel and are encased in pratective shislding
Gray Circles - Ultrasonic Sensors
Black Asrows - Direclion af sensor

Fig 4.2.2¢ Side View

Right and Left sensors weare mountad above whaels
to maintaln 180 degree visibllity

Fig. 4.2.3 Actual placement of ultrasonics

4.2.5 Solutions
For the timing issues, two solutions were used. First, the robot was run at a

decreased speed to make sure readings from other sensors were not missed. Second, a
timeout for reading the pulse was implemented. This way, if no objects were detected or if
the object was a significant distance away, time would not be wasted reading in the pulse.

19

The viewing angle was more problematic. A timeout was, also, used in conjunction
with the encoders to determine how much distance had been travelled within a set time. If a
minimum distance had not been met, it would be safe to assume that the robot was stuck
on some sort of obstacle. It would then back up, travel to the right a set distance, then
rescan for candles. This approach worked fairly well, but was not thoroughly tested. It was
implemented during competition with mediocre success. Future solutions to this problem
would be to include bump sensors on the robot as a redundancy to the ultrasonics.

Finally, the spikes in data were dealt with by using a median filter. This type of filter
removes spikes in data. An averaging filter, for example, would still take the spikes into
account, thus skewing the final result. A median filter completely ignores the spikes as long
as accurate data makes up more than half of the filter window. An example can be seen in
Fig 4.2.4. This filter did slow down actual data processing, but not significantly so, and
helped to remove unwanted data.

Qriginal Moise

Filtered Signal

Arnplituds
Arnplituds

L L L . . . 1 . L L L L . . . 1 . L
0 10 20 30 40 S0 60 70 80 90 100 0 10 20 30 40 S0 60 70 80 90 100
Radians Radians

Fig 4.2.4a Fig 4.2.4b
Original Noisy Signal Signal after Median Filter

4.3 Fire Detection

4.3.1 Design

Flame detection was achieved by hacking a Wii remote. A Wii remote is the
controller for a popular gaming system. On this remote is an IR camera that is capable of
on-board processing. In addition to this, threshold levels, gain, and other features are able
to be calibrated upon setup. Finally, it comes with IR shielding that prevents ambient light
from entering, as well as a plastic case to protect the internal circuitry. It is capable of
detecting a flame at a distance of 5 ft. Overall, the Wii remote is a great piece of robust
hardware.

20

4.3.2 Components

The Wii remote works by detecting the four brightest IR hotspots that exceed the
programmed threshold in the area, and transmitting these coordinates over I12C protocol to
the microcontroller. It has 1024x1024 resolution and runs on a 25 MHz clock. This is very
useful when encoding directional algorithms, and it makes visualizing data much easier.
Fig 4.3.1 gives a visualization of the coordinates outputted from the Wii remote when the
candle was positioned in the lower left hand corner of the viewing range. It can be seen that
stable data can be acquired even at the edge of this screen. Fig 4.3.2 shows the candle
when positioned in the middle of the viewing screen. Data was acquired over a period of 5
seconds and overlayed on top of each other.

Fig 4.3.1 Wii Remote View Fig 4.3.2 Wii Remote View
Candle Position: Lower-Left Candle Position: Center
Accumulation Time: 5 seconds Accumulation Time: 5 seconds

The Wii remote required some external circuitry to function. A 25 MHz clock had to
be built to drive the Wii remote. Additionally, if choosing to interface with a 5V
microcontroller, an IC interface is required. Both of these circuits can be seen in Fig 4.3.3.
Since the Due was used, the SCL and SDA lines were placed directly into the
microcontroller rather than putting them through a level shifter.

21

1 iy TOP VIEW

~" s 1o 57 8 Vg
- troent o SCLOUT 2 - «[0 7 SDAOUT
T T | eouwom SCLIN 3 e [6 SDAIN
T T Dhowt A i GND 4 OJro= 15 READY
0 o3 s Lot | § - NI (i MS8 PACKAGE
ve. d ro VOwIOA 8-LEAD PLASTIC MSOP
 S— — Tmax = 125°C, 04 = 200°C/W

|
F, (e

Fig 4.3.3
Wii Remote External Circuitry

4.3.3 Implementation

The Wii remote was mounted on a 180 degree servo. This rotation allowed the
robot greater range of freedom while locating flame. The robot could position it to either
side while it scanned or move it to the front while moving toward a detected flame. The
servo also added a boost in height such that it was positioned above the fan. This allowed
the Wii remote a larger, unobscured range of viewing.

4.3.4 Problems

A couple of problems come with working with the Wii remote. It runs on 3.3V, which
can be problematic if interfacing with a 5V microcontroller. There are chips that are
designed to help interface instruments of different voltages. The one recommended by the
Instructables in the references was a little problematic due to its size. It is recommended to
find one that is able to be used on a breadboard.

4.3.5 Solutions

The microcontroller used was an Arduino Due, which runs on 3.3V, so this was not
an issue in the final design. Prior to choosing the Arduino Due, a level shifter was used to
interface between the Wii remote and the Arduino Uno. It turned out to be slightly more
impractical than anticipated.

22

4.4 Fire Extinguisher

4.4.1 Design

To extinguish the candle, a fan was used. A propeller was fashioned to a remote
control (RC) car motor. This fan was exceedingly effective, extinguishing flames at
distances over 2 ft. We, also, blew more than one fuse when prototyping the fan circuitry.
Since the fan was such a power drain, we could only turn it on for a limited amount of time.
A circuit was developed to interface the Arduino Due with the battery voltage, and can be
seen in Fig 4.4.1. The first two transistors act as a switch. When 3.3V is applied to the
input, a 6V signal is sent to the power MOSFET. This causes the high-amperage signal to
be sent through the MOSFET to the fan. When the input goes low, the current through the
MOSFET is shut off.

4.4.2 Components

The power MOSFET used was the IRF510. It is a common, well documented
transistor that is capable of handling the high current needed to drive the fan. A heat sink
was attached to help deal with heating issues due to the power dissipated across the
transistor. The transistor comes with a screw hole for easy attachment.

The initial switch was designed using two common NPN transistors: 2N3904. These
common BJTs make the interface between the MOSFET and the Arduino. Since there is
not a lot of current running through these transistors, no power components or heat sinks
were necessary.

Fig 4.4.1
Interface Circuitry for Fan

23

Fig 4.4.2
Fan with Custom 3D Printed Case

4.4.3 Implementation

The fan was mounted using a custom 3D printed case. This allowed the fan to
remain stationary. This can be seen in Fig 4.4.2. This was necessary due to the torque
generated by the fan turning at such high velocity. It was positioned below the Wii remote
such that the propellor did not block the view of the camera. Unfortunately, this slight offset
in positioning did not place the fan in direct alignment with the candle itself. This was not a
problem, however, since the massive influx of air was more than adequate to terminate the
flame.

4.4.4 Problems

The two biggest problem when designing the fan was dealing with the power
dissipation across the fan and interfacing it with the 3.3V output of the microcontroller. The
fan was essentially a motor, one that required a lot of power to operate. This means that
anything used to control its operation would have to be able to dissipate the power safely. It
would also have to be able to be turned on by the 3.3V output. Finally, it must not require a
lot of power to operate in order to prevent damage to the port.

Another problem was the kick from the motor. When spinning at high speeds, it
caused the base to want to twist away. Its odd shape made it hard to find standardized
methods to attach it to the base.

4.4.5 Solutions

A power MOSFET was used as the switch for the fan, and a heat sink was attached
to it to help dissipate the heat. Two BJTs were used to interface with the microcontroller as
described in the Design section above. This switch took little current to operate, which
helped protect the ports on the microcontroller.

24

A 3D printed case was used to fix the location of the fan. This case fit securely over
the fan, which helped with the torque generated by the propellor. The base was secured to
the robot using industrial strength velcro. This caused the fan to be totally immobile until it
needed to be moved.

4.5 Line Sensing

4.5.1 Design

The line sensor was chosen as the analog circuit that would be designed and
constructed from scratch. To design this circuit, several important constraints were taken
into account. The first requirement was that the line detector had to be capable of telling the
difference between the carpeted arena and the white lines. Next, it was important that the
circuit be capable of dealing with sunlight that would be lighting up the final fields at the
RoboRave competition. Lastly, it was ideal for the line sensor to be capable of telling the
differences between the black line and the carpet.

The design was created so as to fulfill each of these tasks according to the level of
importance set for each one. To tell the difference between a white line and dark carpet, it
was determined that a reflection detector would work well. The reflection detector would
consist of a light emitting diode and a photodiode behaving as emitter and receiver,
respectively. The light emitting diode would send light down towards the ground, and then
the light would be reflected back towards the receiver. This behavior is shown in Fig 4.5.1.

r: L]] ;-
§ L] i [}
L L] 1 '
[] ']
v (1 [i
¥ L] f P
[L] i []
1] 1 i
N] ']
\ 1 I |
[1 L] i [
| B |
[T

L B]
[

Fig 4.5.1
Light emitted and received

When the emitter sends light to the dark carpet or black line, the light is absorbed.
This leaves less light to reflect and be seen by the receiver. When the emitter sends light to
the white line, very little is absorbed and so more reflects into the receiver. The amount of
current the photodiode lets through it is proportional to the amount of light reflected into it.
Therefore, this design allowed the line detector to output a higher voltage when a white line
was seen, versus when a black line or carpet was seen.

The next important constraint for designing the line detector was that it needed to be
able to deal with changes in ambient light. To do this, the line sensor needed to be capable
of isolating the signal being created by the light emitting diode. The chosen method for this
was a modulated signal. A frequency would be pulsed on the emitter, and a circuit would

25

be created after the diode to isolate this frequency against all outside light. The frequency
chosen was 1 kHz, and it was isolated using a bandpass filter. It was found, that by
isolating the emitter and detector from ambient light, the circuit was capable of telling the
difference between a black line and the carpet.

4.5.2 Components

The components for the design were chosen specifically to fulfill these tasks as well
as possible. For the emitter/receiver pair, the light emitting diode and photodiode were
chosen in order to match up their intensities. The chosen photodiode was a 475-2649-ND.
This diode has a peak intensity at 840nm but the second strongest intensity was near the
600 nm range. For this reason, an emitter was chosen that had an emission wavelength of
640 nm in order to overlap with the peak intensities of the photodiode, this was a
754-1299-ND.

Next, the components for the filter needed to be determined. For this filter, it was
determined that the task could be completed using a basic resistor and capacitor set up as
long as enough iterations were used. The components for this filter were determined using
the cutoff equation for a filter as shown below in equation 4.5.1.

_ _1
f— ATRC eq 4.5.1

For the bandpass filter, a low pass filter and a high pass filter were implemented.
Two iterations of each, when done creatively, were enough to isolate the frequency and
remove nearly all noise. The final components needed were operational amplifiers. In the
case of this project, the operational amplifiers chosen were LF411 due to their availability
and good slew rate. The operational amplifiers were used to make the small signal sent
from the photodiode into something that could be filtered and used.

4.5.3 Implementation

In order to implement this circuit, many details had to be addressed. When working
with the tiny signals given by a photodiode, the circuit must be made to control losses and
maintain the integrity of the signal. The first thing that had to be done to ensure this was to
use a transimpedance amplifier as the amplifier immediately after the photodiode. If a
typical inverting amplifier circuit had been used, the voltage drop across the initial input
resistor would have had negative effects on the circuit. After the transimpedance amplifier
came the low-pass filter. The resistor values chosen for this sent the signal through a
212Hz filter and then through a 1591Hz filter. The resistor values were chosen to be low
(75Q and 10Q respectively) in order to minimize the amount of voltage loss across them.

26

The signal was then sent through another operational amplifier in order to boost it
before the next filter. This was done, because when the whole bandpass filter was
implemented at this stage initially, the losses were extreme, and the signal disappeared.
So, by boosting the signal before the second half of the filter, the signal survived through
the whole filter. The high pass filter was implemented at this stage. The first cutoff
frequency it went through was a 24Hz cutoff followed by a 34Hz cutoff. Despite these values
seeming low for a 1kHz filter, the result was a perfectly isolated signal. The final stage the
signal went through was two amplifiers used to get the signal near the 3.3 volts that the
Arduino Due can take in. The final results of the circuit were that the signal could see
differences between carpet, a white line, and a black line. The circuit diagram can be seen
in Fig 4.5.2. The results for each surface (black line, carpet, and white line) can be seen
below in Fig 4.5.3a-4.5.3c.

DUIVAMENR ! V3 gy

quMqH r13
9V

+9
& Arduing
Los

Figure 4.5.2
Circuitry for modulated line detector
Tek Sl Trvri M Pos: 0.000s SAVE/REC Tek Ak, Tn‘rd* M Pos: 0.000s SAVE/REC Tek Sl Tvig‘ul I Pos: 0.000s SAVE/REC

Action A
Save Image]

Action
Save Image]

File

F
Format Format Format

About About About
Saving Saving Saving
Images Images. Images
Select Select Select
Folder Folder Folder
Save Save Save
TEKODDZ.JPG TEKOO0D.JPG TEKODO1.JPG
M 500us M 5005 M 5005
T-Mar-1417:34 T-Mar-14 17:32 T-Mar-1417:34

Fig 4.5.3 (a,b,c)
Black line, carpet, and white line responses
To use this circuit effectively, however, a peak detector was added at the final output
so that the Arduino Due could sample at its convenience rather than at the nyquist

27

frequency. Despite full functionality of the individual circuit, however, the integration step
proved to be too complicated. Therefore, a smaller, less exact, circuit had to be
constructed. The specific problems encountered can be found in the following section.

The circuit that was integrated into the robot was the first portion of the original
circuit. To remove complexity, the modulation was removed, and therefore, the bandpass
filter was removed. This left a basic line detector as described above. However, this
detector was capable of seeing white lines very well against the black lines and carpet.The
behavior of the circuit can be seen in Fig 4.5.5. This figure shows a low value as the robot
moves across the carpet and a high spike upon seeing the white line. To deal with the
concerns about sunlight, a shield was built for the circuit to remove ambient light. The
circuit itself can be seen below in Fig 4.5.4.

Fig 4.5.4

(=1
o =
= &

V)
o
s
&

03

Output Voltage (m’
o
i
i)

Fig4.5.5
Difference between carpet and white line

4.5.4 Problems

28

Several problems were encountered during the making of this circuit. The first, as
mentioned above, were the issues of signal losses. The next problem encountered was
slightly less intuitive. During the implementation of the band pass filter, an unexpected, and
strong, signal of 2Hz was appearing in the system after it was sent through the filter. It was
determined that the integration that the filters implement in order to filter the signal was
causing this problem.

The next problem encountered was when several operational amplifiers and other
circuits began to be attached to the sensor. The circuit began having trouble with proximity
to humans and other objects. When in proximity to these objects, the operational amplifiers
would rail.

Occurring with the above problem, was a similar response to the removal of
ambient light. In the case of the circuit being shaded or faced downward, the operational
amplifiers would, again, rail.

The final problem was that, on occasion, the signal would make it safely through the
circuit, but would not respond to changes in the surface it was looking at. This was the
problem that prevented integration of the system with the remainder of the robot.

The last problem was with the circuit that was utilized on the robot. For this circuit
only one operational amplifier was being used, but the Arduino Due could not take an input
of negative voltages.Therefore, the circuit needed to output a positive voltage.

4.5.5 Solutions

As the problems came up during the design of the circuit, each one needed to be
solved. First, the problem of losing the signal was solved by lowering the value of the
resistors used in the filters and including operational amplifiers between each filter

The extra 2Hz signal was caused by the use of a square wave to modulate the
signal. By using a sine wave that problem was solved.

Next, were the proximity, ambient light, and lack of response problems. After much
research, failed solutions, and consulting with an expert in the field, it was found that
capacitance was the problem. The photodiode requires matched capacitances within its
circuit. Therefore, as a new item was added, the capacitance changed and so the circuit
had to be altered. The key alteration was capacitors across the feedback loop of the
amplifiers that were used to match the circuit’'s capacitance. However, as anything new
happened (a component broke and had to be replaced, a new circuit was added, a battery
changed..etc) the capacitors across the feedback had to change. Once the correct
capacitors were used, the circuit was perfect for that situation from then on, no matter what,
but finding the capacitors proved time consuming.

To deal with the desire for one operational amplifier and a positive output voltage,
the solution was to simply power the photodiode with a negative voltage. By doing this, the
negative voltage would then be inverted and go into the Arduino as a positive voltage.

29

4.6 Microcontroller
4.6.1 Design
The Arduino Due was used as the processing unit of the robot. This was chosen
because of its large memory, plethora of 10 ports, as well as its being well documented. To
interface with the circuitry, several connectors were developed to help reduce the number
of wires used to interface with the board.

4.6.2 Components

The Due operates at 3.3V, can output PWM signals with 12 bits of precision to
control the H-bridge, comes with ADC converters for the line sensor, and digital ports for
the ultrasonic sensors. The Due also comes with a myriad of open source libraries, such as
digital filters, wrappers for the Wii remote, 12C communication, servo controls, etc. These
external libraries make programming much easier.

4.6.3 Implementation

The microcontroller was placed at the bottom of the robot by the H-bridge. It was
centrally located to easily interface with the motors, Wii remote, and ultrasonics. It was
secured to the base by three screws, slightly elevated from the base to avoid shorting any
of the circuitry on the back. This system allowed components to be moved around while
keeping the microcontroller centrally located. The microcontroller could also be easily
removed when needed while staying securely fashioned otherwise.

4.6.4 Problems

The Due operates at 3.3V, which allows it to interface easily with the Wii remote.
The ultrasonic sensors, however, operate at 5V. If not careful, these ultrasonic sensors
could potentially destroy a port on the Due. The trigger pin of the ultrasonics could be
activated by a high from the microcontroller, but the return pulse had to be stepped down
from 5V to 3.3V. Other chips that operate nominally at 5V were operated outside of the
recommended voltage range as well. See Sec. 4.2 for further details about ultrasonic
operations.

4.6.5 Solutions

The return pulse from the ultrasonic sensors were stepped down to 3.3V through a
voltage divider. Since the input pins to the arduino are high impedance, this was a feasible
solution. Other chips that fed information into the microcontroller, were operated at 3.3V
instead of the recommended 5V. Though it would have been possible to send each through
a voltage divider or level shifter, this would have required much more board space to
properly implement. The ripple counter, for example, was operated at 3.3V both in the

30

inputs to and the outputs from the microcontroller, and there was never a problem with it
operating correctly.

5.0 Structure

5.1 Design

The robot design was founded on a few requirements the authors deemed
important. The first, was a need for mobility and ease of turning. The second requirement,
was for space to place the various components and power sources. Finally, all of the
components and power sources needed to be securely mounted to avoid losing parts as
the robot moved.

The need for mobility and ease of turning lead to the creation of a round chassis.
This chassis, with two motors, would allow the robot to turn itself in place. Considering the
need to avoid obstacles that may be close together, this was considered to be extremely
important.

To deal with the need for space, the robot was created with two tiers. This allowed
three surfaces for mounting (top of the base, bottom of second tier, and top of second tier)
and raised the IR detector and fire extinguisher to the level of the candles.

Finally, to secure all of the components and power sources, a combination of
industrial strength velcro, plexiglass mounts, and 3D printed mounts were used.

5.2 Implementation

The robot’s chassis was built using two circular aluminum signs with a 10” diameter.
These signs kept the base within the 144 square inch requirement for the competition. The
two tiers were obtained using standoffs that allowed the height to be adjustable within one
inch.

A ruler was used to line up the motor brackets to make sure that they were parallel.
Tape held the brackets down, while two holes were drilled through the center of them. They
were each secured in the middle with two 4-40 bolts and nuts. After that was complete, the
drilling continued on the two inside holes and on the two outside for a total of six nuts and
bolts. This secured the motors and brackets onto the bottom of the base.

The ball casters were attached by taking one of the spacers and sizing a drill bit to
fit the size of the holes. Then three #2 holes were drilled into the base to secure the caster
case. A 90 degree angle protractor was used to make sure the ball casters were
perpendicular to the DC motors.

The ultrasonic sensors were mounted in plexiglass shields that allowed for
differences in height for different sensors, and prevented shorting across the mount. The
line sensor, power battery, ripple counter circuitry, and Wii remote were all mounted using
industrial strength velcro. This velcro allowed the components to be removed when
necessary but held securely in place during movement.

31

The fire extinguisher was held in place with the combination of a 3D printed mount,
and velcro. This was necessary, because the fan would rotate the robot if not allowed some
amount of movement (the mount) but still needed to be securely placed on the robot (the
velcro).

Lastly, the Arduino Due and the H-bridge motor controller were mounted using bolts
and custom drilled holes. These bolts had rubber boots underneath them to prevent
connections between the components and the base. Holes were drilled through the base
so the wires from the H-bridge could be run to the motors.

The orientation of the components on the top tier and bottom tier can be seen in Fig
5.2.1 and Fig 5.2.2.

Fig 5.2.1 Top Wiew = Top Level Fig 5.2.2 Top View - Bottom Leval
Trapezoid - Wil Remate Blue Rectangle - Ultrasonic Sensors
White Circle - Holes Cyan Reclanghs - Arduing Dug
Green Square - Voltage Dividers Fink Rectangle - Motor Circuitry
Purpe Square - Wii External Circuifry Yellow Rectangle - Fan Ciroulley
Orange Reclangle - Servo Fed Rectangle - H-Bridge

Black Cross - Fan Brown Rectangle - Battery

5.3 Problems
The first problem encountered with the structure of the robot was that the ball caster
wheels were not large enough to reach the floor from the base of the robot. The second
problem was that the robot was high centering.

5.4 Solutions
To solve the problem of the ball caster wheels not reaching, a simple wooden dowel
was used to make up the difference. To fix the high centering, it was found that the caster
wheels needed to be sanded down slightly as they were lifting the base up too high.

6.0 Performance
6.1 Individual Subsystems
All the subsystems of the robot were fully functional individually as was necessary for
an effective integrated system. The locomotion allowed the robot to move efficiently, rotate
in place, and, after modifications, the high centering problem was solved. The ultrasonic
range finders worked well as object detection despite delays and small blind spots. After a
few adjustments to the navigation algorithm, the object detection was fully functional. The

32

fire detection system, though problematic at first, proved extremely effective when
implemented with an Arduino Due. It was capable of finding the candles from a fair
distance away with a lot of accuracy.

The fire extinguisher subsystem was more effective than we could have hoped. The
propeller attached to the remote control car motor put out candles in under a second. This
gave more time for the robot to navigate the field. The initial line sensor subsystem worked
perfectly, but was not implemented on the robot. Instead, a simpler system was
implemented, which fulfilled the require role. The system could quickly sense white lines,
and an external shield was implemented to deal with sunlight. This shield was used only
once, and so the effectiveness was difficult to determine.

The decision making subsystem, or navigation algorithm, was extremely effective.
Despite the use of a Monte Carlo search method, the robot was still capable of finding and
extinguishing all four candles in three minutes. The algorithm, also, helped deal with
problems of the other sensors such as the blind spots in the ultrasonic sensors.

6.2 Integrated System

When integrated, each subsystem continued to perform its needed task. The line
sensor was still capable of finding where a white line was. Once the line was found, the
algorithm would then tell the robot to turn away from the line until the line sensor was no
longer showing that the line was present.

The ultrasonic sensors were capable of sensing objects. They would then alert the
microcontroller when objects were in front of it, caddy corner, or to its side. The information
would then be sent from the microcontroller that told the robot to avoid said object.

The fire detection was capable of finding fires, and informing the microcontroller
where that fire was located. The algorithm would then determine how to alter the robot’s
course to send it towards the flame. As this was happening, the robot would check to see if
a white line and an object were detected. When these two other sensors were activated,
the microcontroller would activate the fan, as desired, and remove the flame. If the fan was
turned on and the flame sensor said fire was still there, the robot would correct, and attempt
the extinguish, again.

In the case of the robot getting stuck on an object, the timer would begin counting
and trigger if the microcontroller did not see movement in the wheels. When the timer
triggered, the robot would reverse and attempt to circumvent the object.

All of these behaviors were working as intended and, therefore, it can be concluded
that the robot was fully functional when integrated.

6.3 At RoboRave International
At the RoboRave International competition, the robot performed extremely well. The
scores counted by the judges (the top three) consisted of one perfect run where all 4

33

candles were extinguished in the 3 minute restriction and two runs where three candles
were extinguished.

7.0 Budget

Though the budget did not exactly match our predicted, it was extremely close. Also,
the cost of parts was considerably less than the allocated budget.

7.1 Predicted

Table 7.1
Predicted budget
Component Number Needed Allocated Amount ($)
Wheels/Mounts/Hubs 4 90
Direct Current/Step Motors 2 40
Heat Sensor 1 25
Reflective Sensor 3 15
Object Sensors ~3 40
Integration Circuitry TBD 20
Replacement Parts TBD 95
Total Cost 325
7.2 True
Table 7.2
True budget
Component Number Needed Amount Spent ($)
Wheels/Mounts/Hubs 4 30.52
Direct Current/Step Motors 2 57.98
Heat Sensor 1 25
Reflective Sensor 2 25.36
Object Sensors 5 40
Integration Circuitry 3 23
Replacement Parts 1 50
Total Cost 251.68

34

8.0 Schedule
8.1 Predicted

Table 8.1
Predicted schedule

Line
Sensor

Tasks IR Mapping
Algorithm | Algorithm | Sensor

Condition | Base Motor Testing
Testing Integration | Integration

2/3-2/9

2/10-2/16

2/17-2/23

2/24-3/2

3/3-3/9

3/10-3/16

3/17-3/23

3/24-3/30

3/31-4/6

4/7-4/13

4/14-4/20

4/21-4/127

35

8.2 True
Table 8.2
True schedule

Line
Sensor

Tasks IR Mapping | Object
Algorithm | Algorithm | Sensor

Base Motor Testing
Integration | Integration

2/3-2/9

2/10-2/16

2/17-2/23

2/24-3/2

3/3-3/9

3/10-3/16

3/17-3/23

3/24-3/30

3/31-4/6

4/7-4/13

4/14-4/20

4/21-4/27

4/28-5/3

The category for condition testing was removed due to the fact that all condition
testing was done on the individual subsystems and is, therefore, incorporated into each
respective subsystem category.

9.0 Conclusion

Through the course of this project a robot capable of putting out 4 lit candles in 3
minutes was designed. This robot could navigate a 8x12’ field through the use of two
direct current motors. It did this task autonomously due to the navigation algorithm coded
onto an Arduino Due microcontroller. The microcontroller took data from ultrasonic sensors
in order to avoid obstacles placed on the field and data from a reflection detector to
determine the location of the edge of the field and candles. It could eliminate the fire
through the use of a high powered fan, and tell when that fire was removed.

This robot was constructed under a budget of $251 making it sufficiently under both
the RoboRave and purchasing budgets allotted. The robot’s functionality was also tested at
RoboRave International 2014 where it successfully put out all 4 lit candles in three minutes.

36

10. Reference

Arduino. “Arduino Due.” Arduino. Arduino. June 2013. Web.
http://arduino.cc/en/Main/arduinoBoardDue

BigRedRocket. “Wii Remote IR Camera Hack....” Instructables. Autodesk, Inc. 2000. Web.
http://www.instructables.com/id/Wii-Remote-IR-Camera-Hack/

CTS. “ATS/ATS-SM Series Quartz Crystal.” CTS. CTS Corp. 2014. Web.
http://www.ctscorp.com/components/Datasheets/008-0309-0.pdf

Fairchild. “NPN General Purpose Amplifier.” Fairchildsemi. Fairchild. Oct 2011. Web.
http://www.fairchildsemi.com/ds/MM/MMBT3904.pdf

Harris Semiconductor. “High Speed CMOS Logic 12-Stage Binary Counter.” TI. Texas
Instruments. Oct 2003. Web. http://www.ti.com/lit/ds/symlink/cd74hc4040.pdf

Kako, E. “Small Sotry 2008-2009.” Kako. Kako. 2008. Web.
http://translate.google.com/translate?u=http%3A%2F %2Fwww.kako.com%?2
Fneta%2F2008-009%2F2008-009.htmI&hl=en&ie=UTF-8&sl|=ja&tl=en

Pololu. “Motor with 64 CPR Enconder for 3rD mm Metal Gearmotors.” Pololu. Pololu.
2014. Web. http://www.pololu.com/product/1440

STMicroelectronics. “Dual Full-Bridge Driver.” ST. STMicroelectronics. Jan 2000. Web.
https://www.sparkfun.com/datasheets/Robotics/L298 H_Bridge.pdf

Storr, Wayne. “Passive Low Pass Filter.” Electronics Tutorials. Basic Electronic Tutorials.
3 May 2014. Web. http://www.electronics-tutorials.ws/filter/filter_2.html

Texas Instruments. “Hex Inverters.” TI. Texas Instruments. July 2003. Web.
http://www.ti.com/lit/ds/symlink/sn74hct04.pdf

Tillaart, Rob. “A runningMedian Class for Arduino.” Playground.Arduino. Arduino. 30 Nov
2013. Web. http://playground.arduino.cc/Main/RunningMedian

Vishay. “Power MOSFET.” Vishay. Vishay. 21 Mar 2011. Web.
http://www.vishay.com/docs/91015/sihf510.pdf

37

http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FMain%2FarduinoBoardDue&sa=D&sntz=1&usg=AFQjCNGqvE3chjpdlPJa_lUOP0vLPRU9Lg
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FMain%2FarduinoBoardDue&sa=D&sntz=1&usg=AFQjCNGqvE3chjpdlPJa_lUOP0vLPRU9Lg
http://www.google.com/url?q=http%3A%2F%2Fwww.instructables.com%2Fid%2FWii-Remote-IR-Camera-Hack%2F&sa=D&sntz=1&usg=AFQjCNHxBk7CTapJ7Ap5-XBmSJFfkgLxhg
http://www.google.com/url?q=http%3A%2F%2Fwww.instructables.com%2Fid%2FWii-Remote-IR-Camera-Hack%2F&sa=D&sntz=1&usg=AFQjCNHxBk7CTapJ7Ap5-XBmSJFfkgLxhg
http://www.google.com/url?q=http%3A%2F%2Fwww.ctscorp.com%2Fcomponents%2FDatasheets%2F008-0309-0.pdf&sa=D&sntz=1&usg=AFQjCNGWaxiuujKHeACOBsSCXDnD-YzmRA
http://www.google.com/url?q=http%3A%2F%2Fwww.ctscorp.com%2Fcomponents%2FDatasheets%2F008-0309-0.pdf&sa=D&sntz=1&usg=AFQjCNGWaxiuujKHeACOBsSCXDnD-YzmRA
http://www.google.com/url?q=http%3A%2F%2Fwww.ctscorp.com%2Fcomponents%2FDatasheets%2F008-0309-0.pdf&sa=D&sntz=1&usg=AFQjCNGWaxiuujKHeACOBsSCXDnD-YzmRA
http://www.google.com/url?q=http%3A%2F%2Fwww.fairchildsemi.com%2Fds%2FMM%2FMMBT3904.pdf&sa=D&sntz=1&usg=AFQjCNEuMKtdlqjlu-19xNf9pytLcPmBfQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ti.com%2Flit%2Fds%2Fsymlink%2Fcd74hc4040.pdf&sa=D&sntz=1&usg=AFQjCNEqcoZSO9rKl1J5BkradqJqa4kPjw
http://translate.google.com/translate?u=http%3A%2F%2Fwww.kako.com%2Fneta%2F2008-009%2F2008-009.html&hl=en&ie=UTF-8&sl=ja&tl=en
http://translate.google.com/translate?u=http%3A%2F%2Fwww.kako.com%2Fneta%2F2008-009%2F2008-009.html&hl=en&ie=UTF-8&sl=ja&tl=en
http://translate.google.com/translate?u=http%3A%2F%2Fwww.kako.com%2Fneta%2F2008-009%2F2008-009.html&hl=en&ie=UTF-8&sl=ja&tl=en
http://translate.google.com/translate?u=http%3A%2F%2Fwww.kako.com%2Fneta%2F2008-009%2F2008-009.html&hl=en&ie=UTF-8&sl=ja&tl=en
http://www.google.com/url?q=http%3A%2F%2Fwww.pololu.com%2Fproduct%2F1440&sa=D&sntz=1&usg=AFQjCNG0RoS1O0erNejE8lsf0I_JLilRsQ
https://www.google.com/url?q=https%3A%2F%2Fwww.sparkfun.com%2Fdatasheets%2FRobotics%2FL298_H_Bridge.pdf&sa=D&sntz=1&usg=AFQjCNGwJ6gxklZ3N5hfhJ3L4HEWnda4Bw
https://www.google.com/url?q=https%3A%2F%2Fwww.sparkfun.com%2Fdatasheets%2FRobotics%2FL298_H_Bridge.pdf&sa=D&sntz=1&usg=AFQjCNGwJ6gxklZ3N5hfhJ3L4HEWnda4Bw
https://www.google.com/url?q=https%3A%2F%2Fwww.sparkfun.com%2Fdatasheets%2FRobotics%2FL298_H_Bridge.pdf&sa=D&sntz=1&usg=AFQjCNGwJ6gxklZ3N5hfhJ3L4HEWnda4Bw
http://www.google.com/url?q=http%3A%2F%2Fwww.electronics-tutorials.ws%2Ffilter%2Ffilter_2.html&sa=D&sntz=1&usg=AFQjCNFFku8mjFdBBn9osH-SaQln16KcTA
http://www.google.com/url?q=http%3A%2F%2Fwww.ti.com%2Flit%2Fds%2Fsymlink%2Fsn74hct04.pdf&sa=D&sntz=1&usg=AFQjCNEQ9PIpJQf7oLUrmABmUYvl7N23bA
http://www.google.com/url?q=http%3A%2F%2Fplayground.arduino.cc%2FMain%2FRunningMedian&sa=D&sntz=1&usg=AFQjCNE5dSoZkT5RLCDV8yAt9_CWeLeGLg
http://www.google.com/url?q=http%3A%2F%2Fplayground.arduino.cc%2FMain%2FRunningMedian&sa=D&sntz=1&usg=AFQjCNE5dSoZkT5RLCDV8yAt9_CWeLeGLg
http://www.google.com/url?q=http%3A%2F%2Fplayground.arduino.cc%2FMain%2FRunningMedian&sa=D&sntz=1&usg=AFQjCNE5dSoZkT5RLCDV8yAt9_CWeLeGLg
http://www.google.com/url?q=http%3A%2F%2Fwww.vishay.com%2Fdocs%2F91015%2Fsihf510.pdf&sa=D&sntz=1&usg=AFQjCNGVHwlC8oxBhuCS_rAD77p1NwJOEQ
http://www.google.com/url?q=http%3A%2F%2Fwww.vishay.com%2Fdocs%2F91015%2Fsihf510.pdf&sa=D&sntz=1&usg=AFQjCNGVHwlC8oxBhuCS_rAD77p1NwJOEQ

11. Appendix
11.1 Main Code

#include <RunningMedian.h>
#include <Wire.h>
#include <Servo.h>

#define varlen 400
#define fieldWidth 96
#define fieldHeight 144
#define NumUS 5
#define LEFT O
#define UP 1

#define RIGHT 2
#define DOWN 3
#define NOTHING 0
#define DETECTED 1

/IFilter Sizes

#define IRCam_FiltSize 5
#define US_FiltSize 4
#define Line_FiltSize 3

I
/IPins
I

//Ultrasonic Sensors

const byte USO_EchoPin = 43;
const byte USO_TrigPin = 45;
const byte US1_EchoPin = 40;
const byte US1_TrigPin = 38;
const byte US2_EchoPin = 48;
const byte US2_TrigPin = 49;
const byte US3_EchoPin = 34;
const byte US3_TrigPin = 32;
const byte US4_EchoPin = 46;
const byte US4_TrigPin = 47,

/IMotor Control

const byte Irmotor = 9; //Left Forward Motor Control
const byte Ifmotor = 8; /IRight Forward Motor Control
const byte rrmotor = 7; //Left Reverse Motor Control
const byte rfmotor = 6; //IRight Reverse Motor Control
const int whitePin = 24; /I white wire on motor

const int yellowPin = 22; /I yellow wire on motor

/IDistance from ripple counter
const byte dist_reset = 23;
const byte dist7 = 25; //MSB
const byte dist6 = 27;

const byte dist5 = 29;

const byte dist4 = 31;

const byte dist3 = 33;

const byte dist2 = 35;

const byte dist1 = 37;

const byte dist0 = 39; //LSB

38

/ILine Sensors
const int line1Pin = A3;
const int line2Pin = A4;

/IMiscellaneous Pins

const byte servoPin = 5;
const byte fanPin = 30;
const byte calibrationPin = 41
const byte ledPin = 13;

/IRobot dimensions
const float wheelDiam = 3.0;
const float roboDiam = 11.75;

/IServo for Wii Remote

/IControl pin for Fan

; //Button to calibrate turns if wanted
//On Board LED

I

//Driving/Motor Variables

I

int curdir = UP; /[Direction of robot

int coord[2] = {0, 0};//Location

of robot

int totrot[2] = {0, 0}; //Total distance travled [full rotation, fraction]
int origLoc[2] = { -1, -1}; //Location to return to after putting out candle

int origdir = UP; /[Original
int origlRCamdir = LEFT; //O

direction of travel
riginal direction of Wii remote

int totdist = 0; /[Total distance traveled during forward

int minwind =0; //Difference between left and right motor PWM duty cycles
int [dist = 0; /IDistance to turn left 360 degrees

int rdist = 0; /IDistance to tyurn right 360 degrees

intcnt = 0;

I

/[Timeout Variables

I

unsigned int time0 = 0;
unsigned int time1 = 0;
unsigned int time2 = 0;
unsigned int timedif = 5000;
unsigned int timedif2 = 12000
unsigned int mindist = 2;
bool ignoretime = 0;

up afterwards

I

/[Time for lack of movement

/[Current time

/[Time for spin search

/[Time difference to check for movement

; /[Time difference for spin search

//Minimum distance robot must travel within timedif

//If a routine that clears distance is called, this variable is set high to avoid backing

/IFlame Sensor Variables
I

int flamex[4];
int flamey[4];
int IRPosx[4];
int IRPosy[4];

/[X-coordinates
/lY-coordinates
//Single X-coordinates
//Single Y-coordinates

int IRAlert[4]; //Detects Flame ==

int IRsensorAddress = 0xBO;
int slaveAddress;

Servo FlameServo;

float servoPos = 90;

byte IRCam_Dir = UP;

int IRCam_Window = 120;

//Servo

//Degrees of servo rotation
/[Direction of servo

//Window to keep candle within

39

/IFilters for IR cam data

RunningMedian IRx_Filt0 = RunningMedian(IRCam_FiltSize);
RunningMedian IRx_Filt1 = RunningMedian(IRCam_FiltSize);
RunningMedian IRx_Filt2 = RunningMedian(IRCam_FiltSize);
RunningMedian IRx_Filt3 = RunningMedian(IRCam_FiltSize);

RunningMedian IRy_Filt0 = RunningMedian(IRCam_FiltSize);
RunningMedian IRy_Filt1 = RunningMedian(IRCam_FiltSize);
RunningMedian IRy_Filt2 = RunningMedian(IRCam_FiltSize);
RunningMedian IRy_Filt3 = RunningMedian(IRCam_F:iltSize);

I
/IUltrasonic Sensor Variables
I
float USDist[NumUS]; /IDistance to nearest object

bool USAlertifNumUS]; //Object within threshold

float ObjDistThresh = 20; //Distance before USAlert goes high

/[Filters for US sensors

RunningMedian US_Filt0 = RunningMedian(US_FiltSize);
RunningMedian US_Filt1 = RunningMedian(US_FiltSize);
RunningMedian US_Filt2 = RunningMedian(US_FiltSize);
RunningMedian US_Filt3 = RunningMedian(US_FiltSize);
RunningMedian US_Filt4 = RunningMedian(US_FiltSize);

1
/ILine Sensor
I
int Line_1=0; /IADC value Line sensor 1

int Line_2 =0; /IADC value Line sensor 2

int Line_1_Thresh = 0; //Nominal carpet value as read by sensor 1
int Line_2_Thresh =0; //Nominal carpet value as read by sensor 2
int LineDif1 = 50; //Difference between carpet and white line

int LineDif2 = 50; //Difference between carpet and white line

int LineAlert[2] = {0, 0}; //Alert when white line is detected

/[Filters for line sensors
RunningMedian Line_1_Filt = RunningMedian(Line_FiltSize);
RunningMedian Line_2_Filt = RunningMedian(Line_FiltSize);

I
//IPROGRAM
Il

void setup() {
Serial.begin(9600);

/lInitialize Pins
pinMode(whitePin, INPUT);
pinMode(yellowPin, INPUT);

pinMode(USO_EchoPin, INPUT);
pinMode(USO0_TrigPin, OUTPUT);
pinMode(US1_EchoPin, INPUT);
pinMode(US1_TrigPin, OUTPUT);
pinMode(US2_EchoPin, INPUT);

pinMode(US2_TrigPin, OUTPUT);
pinMode(US3_EchoPin, INPUT);
pinMode(US3_TrigPin, OUTPUT);
pinMode(US4_EchoPin, INPUT);
pinMode(US4_TrigPin, OUTPUT);

pinMode(dist0, INPUT)
pinMode(dist1, INPUT)
pinMode(dist2, INPUT);
pinMode(dist3, INPUT);
)
)
)

pinMode(dist4, INPUT
pinMode(dist5, INPUT
pinMode(dist6, INPUT
pinMode(dist7, INPUT);

pinMode(dist_reset, OUTPUT); ResetDist();

pinMode(fanPin, OUTPUT); digitalWrite(fanPin, LOW);
pinMode(calibrationPin, INPUT);
pinMode(ledPin, OUTPUT); digitalWrite(ledPin, LOW);

/lInitialize Flame Sensor
slaveAddress = IRsensorAddress >> 1; // This results in 0x21 as the address to pass to TWI

IRCam_lInit(); /lInitialize IR camera

FlameServo.attach(servoPin); //Attach Servo

FlameServo.write(servoPos); /ISet initial position to forward

delay(1000);

CalibrateTurn(140); /[Calibration routine for turning if calibrate button is pressed
Line_Initialize(); /[Calibration routine for line sensors

/IRead data to help initialize filters
for (inti = 0; i < US_FiltSize; i++) {
Line_ReadSensors();// Serial.printin("Done Line");
US_ReadSensors();// Serial.printin("Done Ultrasonics");
}
}

void loop() {

//Get data from all sensors
Line_ReadSensors();
US_ReadSensors();
IRCam_GetData();

IRCam_TurnDirection(LEFT); //Ensure camera is pointed to the left
digitalWrite(ledPin, LOW); //Turn off on-board LED

//If flame was detected, search for it

if (IRAlert[0] == DETECTED) {
Serial.printin("Seeking Flame");
SeekFlame(175);

}

//Avoid object within x centimeters
AvoidObject(5);

time1 = millis(); //Get current time

41

/ITimeout Routine for checking for minimun distance travelled
if (((time1 - time0) > timedif)&&(ignoretime == 0)) {

time0 = time1;

ignoretime = 0;

if (totdist < mindist) {

Reverse(240, 3, 0, 0);

RTurn(240, 20);

}

totdist = O; totrot = {0, 0}; ResetDist();
}

/[Timeout routine for spin searching for flame
if ((time1 - time2) > timedif2) {

time2 = time1,;

RSpinSearch(220, 360);
}

/IChange directions if run forward into object or hit white line

if (USAlert[2] == DETECTED) || (LineAlert[0] == DETECTED) || (LineAlert[1] == DETECTED)) {

Stop(); Reverse(240, 3, 0, 0); //Back up slightly

/ILED goes high if line sensor goes off for debugging
if (USAlert[2] == DETECTED) {

digitalWrite(ledPin, LOW);

}

if (LineAlert[0] == DETECTED) {

digitalWrite(ledPin, HIGH);

}

if (LineAlert[1] == DETECTED) {

digitalWrite(ledPin, HIGH);

}

/[Turn left between 0 and 90 degreees
int newDir = random(0, 90);
LSpinSearch(240, newDir); Stop();

/IRefresh distance data
for (inti=0; i < US_FiltSize; i++) {
US_ReadSensors();
}
}

//If no candles or objects are seen, go forward
else {
Forward(175, -1, 0, 0);
}
}

/[Displays data from all sensors

void DisplayData(){
Serial.print("USO Dist: "); Serial.print(USDist[0]);
Serial.print(" USO Alert: "); Serial.printin(USAlert[0]);
Serial.print("US1 Dist: "); Serial.print(USDist[1]);
Serial.print(" US1 Alert: "); Serial.printin(USAlert[1]);
Serial.print("US2 Dist: "); Serial.print(USDist[2]);
Serial.print(" US2 Alert: "); Serial.printin(USAlert[2]);

42

Serial.print("US3 Dist: "); Serial.print(USDist[3]);
Serial.print(" US3 Alert: "); Serial.printin(USAlert[3]);
Serial.print("US4 Dist: "); Serial.print(USDist[4]);
Serial.print(" US4 Alert: "); Serial.printin(USAlert[4]);
Serial.print("Flamex: "); Serial.printin(flamex[0]);
Serial.print("IR Alert: "); Serial.printin(IRAlert[0]);
Serial.print("Line 1: "); Serial.print(Line_1); Serial.print(" Line 2: "); Serial.printin(Line_2);
Serial.printin(" ");
delay(100);
}

void SeekFlame(int dutcyc) {
int loff = 0;
int roff = 0;
int maxoffset = 200;
int Iturn = 0;
int rturn = 0;
int timeout = 0;
int timethresh = 500;
bool breakvar = NOTHING;
Stop();
//IRecord orignal location
RecordLocation(coord);

/IKeep searching for flames while ultrasonic sensors, line sensors, and IR sensosrs detect nothing
while ((((LineAlert[1] == NOTHING) && (LineAlert[2] == NOTHING)) || (IRAlert[0] == NOTHING) || (USAlert[2] ==
NOTHING)) && (breakvar == NOTHING)) {
rturn = 0;
Iturn = 0;
breakvar = NOTHING;
time1 = millis();

/[Timeout for backing up

if (((time1 - time0) > timedif)&&(ignoreTime == 1)) {
time0 = time1;

ignoreTime = 0;

if (totdist < mindist) {

Reverse(240, 3, 0, 0);

LTurn(240, 20);

}

totdist = O; totrot = {0, 0}; ResetDist();
}

IRCam_GetData();
US_ReadSensors();
Line_ReadSensors();

/[Algorithm for searching for flames based upon direction of camera when it is detected
switch (IRCam_Dir) {
/If up, keep the flame in the center of the field. While it is, go forward. When it exits the center, correct by
turning until it is back in the center
case (UP):
if (flamex[0] < -IRCam_Window) {
Stop();
while ((flamex[0] < 0) && (breakvar == NOTHING)) {
IRCam_GetData();
LTurn(140, 1);
lturn++;

43

totrot = {2, 2},
totdist = mindist + 1;
if (Iturn > 400) {
breakvar = DETECTED;
time2 = millis();
time0 = time2;
}
!
}
else if (flamex[0] > IRCam_Window) {
Stop();
while ((flamex[0] > 0) && (breakvar == NOTHING)) {
IRCam_GetData();
RTurn(140, 1);
rturn++;
totrot = {2, 2},
totdist = mindist + 1;
if (rturn > 400) {
breakvar = DETECTED;
time2 = millis();
time0 = time2;
}
}
[roff += 3;
}
else {
loff = 0;
roff = 0;
} break;

//If it is detected, go forward until it is in the center of the field of view
case (LEFT):

while (flamex[0] > IRCam_Window) {
IRCam_GetData();

Forward(dutcyc, -1, 0, 0);

}

Stop();

IRCam_Dir = UP;

servoPos = IRCam_Dir * 90;
FlameServo.write(servoPos);
LTurn(200, 90);

break;

//If it is detected, go forward until it is in the center of the field of view
case (RIGHT):

while (flamex[0] < -IRCam_Window) {
IRCam_GetData();

Forward(dutcyc, -1, 0, 0);

}

Stop();

IRCam_Dir = UP;

servoPos = IRCam_Dir * 90;
FlameServo.write(servoPos);
RTurn(200, 90);

break;

}

44

/[Ensures Limits are imposed on offsets
if (loff > maxoffset) {
loff = maxoffset;

}

if (Ioff < 0) {
loff = 0;

}

if (roff > maxoffset) {
roff = maxoffset;

}

if (roff < 0) {
roff = 0;

}

/ICheck for objects to avoid

AvoidFlameObiject(5);

Forward(dutcyc, -1, loff, roff);
}

//When all three conditions are met, turn on fan
Stop();

PulseFan();

/IRTurn(240,lturn);

/ILTurn(240,rturn);

/IReturnOrigLoc();

//Back up and record data
Reverse(240, 3, 0, 0); Stop(); ResetDist();
for (inti = 0; i < US_FiltSize; i++) {
Line_ReadSensors();
US_ReadSensors();
}
}

11.2 Navigation

/IConverts wheel rotations and edges to physical distances
/INote, the LSB is the 3rd flip flop on the Ripple counter
/[Total edges per wheen rotation: 232
/lInput rot[0] - number of wheel rotations
/lInput rot[1] - number of edges detected
float GetDistance(int rot[2]) {

byte bitrot = 0;

//IReads ripple counter and converts to an 8-bit number
for (inti=0;i<8;i++){

bitrot <<= 1;

bitrot |= digitalRead(dist7 + i * 2);
}

rot[1] = bitrot; //Record number of edges on ripple counter

//If edges are greater than 232, increment wheel counter and subtract 232 from edge count
if (rot[1] >= 1856 / (4 * 2)) {

rot[0]++; rot[1] = bitrot % (1856 / (4 * 2));

ResetDist();

45

}

/IReturn physical distance
return (((float)rot[1] / (1856.0 / (4.0 * 2.0)) + (float)rot[0])) * wheelDiam * 3.14159;
}

/[Turns left while searching for a flame

/lInput rotspd - speed of turn (max 255)

/lInput deg - degree of turn (min 0)

void LSpinSearch(int rotspd, int deg) {
int SSrot[2] = {0, 0}; //tracks rotation of wheel and edges from encoders
float dist = 0; //Distance tracking
bool breakvar = NOTHING; //Breaks while loop when high

IRCam_TurnDirection(UP); //Turn IRCamera up
ResetDist(); //IReset distance count on ripple counter

//Set speed of motors to turn
analogWrite(Irmotor, rotspd);
analogWrite(lfmotor, 0);
analogWrite(rfmotor, rotspd);
analogWrite(rrmotor, 0);

/[Turn until degree is reached or flame is detected

while ((dist < (((float)deg) / 360.0 * (rdist))) && (breakvar == NOTHING)) {
IRCam_GetData();
dist = GetDistance(SSrot);
if (IRAlert[0] == DETECTED) {

Stop();
SeekFlame(175);
breakvar = DETECTED;
!

}

Stop();

//Updates current direction for grid naviagation
if (curdir + deg /90 < 0) {
curdir = (curdir + deg / 90) % 4 + 4;

}
else {
curdir = (curdir + deg / 90) % 4;
}
ResetDist(); //IReset ripple counter

Line_ReadSensors(); //Read line sensors
ignoretime = 1; //lgnores immobile timeout

}

/[Turns Right while searching for a flame

/lInput rotspd - speed of turn (max 255)

/lInput deg - degree of turn (min 0)

void RSpinSearch(int rotspd, int deg) {
int SSrot[2] = {0, 0}; //tracks rotation of wheel and edges from encoders
float dist = 0; /IDistance tracking
bool breakvar = NOTHING; //Breaks while loop when high

IRCam_TurnDirection(UP); //Turn IRCamera up

46

ResetDist(); /IReset distance count on ripple counter

//Set speed of motors to turn
analogWrite(lfmotor, rotspd);
analogWrite(Irmotor, 0);
analogWrite(rrmotor, rotspd);
analogWrite(rfmotor, 0);

/[Turn until degree is reached or flame is detected

while ((dist < (((float)deg) / 360.0 * (rdist))) && (breakvar == NOTHING)) {
IRCam_GetData();
dist = GetDistance(SSrot);
if (IRAlert[0] == DETECTED) {

Stop();
SeekFlame(175);
breakvar = DETECTED;
}

}

Stop();

//Updates current direction for grid naviagation
if (curdir + deg / 90 < 0) {
curdir = (curdir + deg / 90) % 4 + 4;

}
else {
curdir = (curdir + deg / 90) % 4;
}
ResetDist(); //IReset ripple counter

Line_ReadSensors(); //Read line sensors
ignoretime = 1; //lgnores immobile timeout

}

/ICalibrtates turn data to use. Press calibration button, wait until robot has turned 360 degrees then press again
void CalibrateTurn(int rotspd) {
bool cal = digitalRead(calibrationPin);
if (cal == DETECTED) {
/IAcknowledge Command
delay(1000);

/[Wait until button is released to begin calibrating
while (cal == DETECTED) {

delay(10);
cal = digitalRead(calibrationPin);
}

/IRight Turn algorithm
int RTrot[2] = {0, 0};
float dist = 0;

analogWrite(Ifmotor, rotspd);
analogWrite(Irmotor, 0);
analogWrite(rrmotor, rotspd);
analogWrite(rfmotor, 0);

while (cal == NOTHING) {

cal = digitalRead(calibrationPin);
dist = GetDistance(RTrot);

}

//IRecord distance travelled for 360 degrees
Stop();

rdist = dist;

ResetDist();

delay(1000);

/ILeft Turn
cal = digitalRead(calibrationPin);

//wait until Button is released to turn again
while (cal == DETECTED) {

delay(10);

cal = digitalRead(calibrationPin);

}

int LTrot[2] = {0, 0};

dist = 0;

analogWrite(Irmotor, rotspd);
analogWrite(lfmotor, 0);
analogWrite(rfmotor, rotspd);
analogWrite(rrmotor, 0);
while (cal == NOTHING) {
cal = digitalRead(calibrationPin);
dist = GetDistance(LTrot);
}
Stop();
Idist = dist;
ResetDist();

}

//If button is not pressed, use expected distances
else {
rdist = (360.0 / 360.0 * (3.14159 * roboDiam));
Idist = (360.0 / 360.0 * (3.14159 * roboDiam));
}
}

//Make robot go forward
/lInput dutcyc - Speed of travel (max 255)
/lInput goaldist - Distance to travel forward (inches) (input -1 to go forward unspecified amount)
/lInput loff - offset for left motor
/lInput roff - offset for right motor
void Forward(int dutcyc, float goaldist, int loff, int roff) {
int FTrot[2] = {0, O};
float dist = 0;
bool motoroff = 0;
int Ispd = dutcyc - loff;
int rspd = dutcyc - roff - minwind;
intcnt =0;
int lecnt = 0;

/limposes limits on motor offsets
if (Ispd > 255) {

Ispd = 255;
}

48

if (Ispd < 0) {
Ispd = 0;

}

if (rspd > 255) {
rspd = 255;

}

if (rspd < 0) {
rspd = 0;

}

analogWrite(Ifmotor, Ispd);
analogWrite(rfmotor, rspd);
analogWrite(Irmotor, 0);
analogWrite(rrmotor, 0);

/IGo forware

if (goaldist I=-1) {
while (dist < goaldist) {
dist = GetDistance(FTrot);
IRCam_GetData();
if (IRAlert[0] == DETECTED) {
SeekFlame(175);
}
}
UpdateCoordinates(dist, curdir);
ResetDist();

}

else {
totdist = GetDistance(totrot);

}

}

/IMake robot go backwards
/lInput dutcyc - Speed of travel (max 255)
/lInput goaldist - Distance to travel forward (inches) (input -1 to go forward unspecified amount)
/lInput loff - offset for left motor
/lInput roff - offset for right motor
void Reverse(int dutcyc, int goaldist, int loff, int roff) {
int FTrot[2] = {0, O};
float dist = 0;
int Ispd = dutcyc - loff;
int rspd = dutcyc - roff - minwind;
ResetDist();
if (Ispd > 255) {
Ispd = 255;
}
if (Ispd < 0) {
Ispd = 0;

}

if (rspd > 255) {
rspd = 255;

}

if (rspd < 0) {
rspd = 0;

}

/I Serial.print("Lspd: "); Serial.printin(Ispd);

49

/I Serial.print("Rspd: "); Serial.printin(rspd);
/I delay(50);

analogWrite(Irmotor, Ispd);
analogWrite(rrmotor, rspd);
analogWrite(Ifmotor, 0);
analogWrite(rfmotor, 0);
if (goaldist 1= -1) {
while (dist < goaldist) {
dist = GetDistance(FTrot);
IRCam_GetData();
/lif(IRAlert[0] == DETECTED){SeekFlame(230);}
}
UpdateCoordinates(dist, curdir);
/ISerial.print("Coordinates: "); Serial.print(coord[0]); Serial.print(","); Serial.printin(coord[1]);
ResetDist();
}
else {
/Itotdist = GetDistance(totrot);
/lif(IRAlert[0] == DETECTED){SeekFlame(230);}

}
ResetDist();

}

/IMakes robot turn right deg degrees at rotspd speed
/lInput rotspd - Speed of turn
/lInput deg - degree of turn
void RTurn(int rotspd, int deg) {
int RTrot[2] = {0, 0};
float dist = 0;
ResetDist();
analogWrite(Ifmotor, rotspd);
analogWrite(Irmotor, 0);
analogWrite(rrmotor, rotspd);
analogWrite(rfmotor, 0);

//Keep turning until distance exceeds deg
while (dist < (((float)deg) / 360.0 * (rdist))) {
dist = GetDistance(RTrot);

}
Stop();

/IChecks for negative numbers
if (curdir + deg /90 < 0) {
curdir = (curdir + deg / 90) % 4 + 4;
}
else {
curdir = (curdir + deg / 90) % 4;
}
ResetDist();

}

//Makes robot turn left deg degrees at rotspd speed
/lInput rotspd - Speed of turn
/lInput deg - degree of turn
void LTurn(int rotspd, int deg) {
int LTrot[2] = {0, 0};

float dist = 0;
ResetDist();
analogWrite(Irmotor, rotspd);
analogWrite(lfmotor, 0);
analogWrite(rfmotor, rotspd);
analogWrite(rrmotor, 0);
/[Serial.print("Left: "); Serial.printin(deg);
while (dist < (((float)deg) / 360.0 * (Idist))) {
/ICheckRotState(LTrot);
dist = GetDistance(LTrot);
/I Serial.print(LTrot[0]); Serial.printin(LTrot[1]);
/[Serial.printin(dist);
}
/[Serial.print("Ldist: ");Serial.printin(dist);
/I Serial.print("Final Dist: "); Serial.printin(dist);
Stop();
//Serial.print("Test: "); Serial.printin(deg/90);
if (curdir - deg / 90 < 0) {
curdir = (curdir - deg / 90) % 4 + 4;

}
else {
curdir = (curdir - deg / 90) % 4;
}
ResetDist();
/ISerial.print("Current Dir: "); Serial.printin(curdir);

}

//Stops robot dead in its tracks

void Stop() {
analogWrite(Irmotor, 0);
analogWrite(Ifmotor, 0);
analogWrite(rfmotor, 0);
analogWrite(rrmotor, 0);

//Update distance data
totdist = GetDistance(totrot);
UpdateCoordinates(totdist, curdir);
totdist = O;
totrot = {0, 0};
ResetDist();

}

//Return to the original location recorded with RecordLocation function
void ReturnOrigLoc() {
int xoff = coord[0] - origLoc[0]; //Distances to travel in the x direction
int yoff = coord[1] - origLoc[1]; //Distances to travel in the y direction

/ICorrect in the x direction

if (xoff > 0) {
TurnDirection(LEFT);
Forward(240, abs(xoff), 0, 0);

}

else if (xoff < 0) {
TurnDirection(RIGHT);
Forward(240, abs(xoff), 0, 0);

51

Stop();

/ICorrect in the y direction

if (yoff > 0) {
TurnDirection(DOWN);
Forward(240, abs(yoff), 0, 0);

}

else if (yoff < 0) {
TurnDirection(UP);
Forward(240, abs(yoff), 0, 0);

}

Stop();

TurnDirection(origdir);

servoPos = (180 - origlRCamdir * 90);

FlameServo.write(servoPos);

IRCam_Dir = origIRCamdir;

origLboc = { -1, -1};

}

/[Turn robot to face goaldir
void TurnDirection(int goaldir) {
int tempdirl = curdir;
intrent = 0;
intlent = 0;
int turndif = abs(curdir - goaldir);

/ICheck distance to turn left
while (tempdirl = goaldir) {
if (tempdirl - 1 <0) {
tempdirl = (tempdirl - 1) % 4 + 4;
}
else {
tempdirl = (tempdirl - 1) % 4;
}

lent++;

}

tempdirl = curdir;

//ICheck distance to turn right
while (tempdirl != goaldir) {
if (tempdirl + 1 <0) {
tempdirl = (tempdirl + 1) % 4 + 4;
}
else {
tempdirl = (tempdirl + 1) % 4;
}

rent++;

}

/[Turn whichever direction takes less turns
if (rent < lent) {
RTurn(240, rcnt * 90);
}
else {
LTurn(240, Icnt * 90);

}
}

52

//IReset the ripple counter

void ResetDist() {
digitalWrite(dist_reset, HIGH);
delayMicroseconds(50);
digitalWrite(dist_reset, LOW);

}

11.3 IR Camera Code

void Write_2bytes(byte d1, byte d2)

{
Wire.beginTransmission(slaveAddress);
Wire.write(d1); Wire.write(d2);
Wire.endTransmission();

}

void IRCam_Init() {
Wire.begin();
Write_2bytes(0x30, 0x01); delay(10);
Write_2bytes(0x30, 0x08); delay(10);
Write_2bytes(0x06, 0x90); delay(10);
Write_2bytes(0x08, 0xCO0); delay(10);
Write_2bytes(0x1A, 0x40); delay(10);
Write_2bytes(0x33, 0x33); delay(10);
}

void IRCam_GetData() {
byte data_buf[16];
inti;

int Ix0, Iy0, Ix1, Iy1;

int Ix2, ly2, 1x3, ly3;

ints;

//IR sensor read
Wire.beginTransmission(slaveAddress);
Wire.write(0x36);
Wire.endTransmission();

Wire.requestFrom(slaveAddress, 16); /I Request the 2 byte heading (MSB comes first)
for (i=0;i<16;i++) {
data_buf[i] = 0;
}
i=0;
while (Wire.available() && i < 16) {
data_buf[i] = Wire.read();
i++;
}
Ix0 = data_buf[1];
ly0 = data_buf[2];
s = data_buf[3];
IX0 += (s & 0x30) << 4;
ly0 += (s & 0xCO0) << 2;

Ix1 = data_buf[4];

ly1 = data_buf[5];
s = data_buf[6];
Ix1 += (s & 0x30) << 4;
ly1 += (s & 0xC0) << 2;

Ix2 = data_buf[7];
ly2 = data_buf8];
s =data_buf[9];
Ix2 += (s & 0x30) << 4;
ly2 += (s & 0xC0) << 2;

Ix3 = data_buf[10];
ly3 = data_buf[11];
s =data_buf[12];
Ix3 += (s & 0x30) << 4;
ly3 += (s & 0xCO0) << 2;

IRX_Filt0.add(1x0 - 512);
IRx_Filt1.add(Ix1 - 512);
IRx_Filt2.add(Ix2 - 512);
IRx_Filt3.add(Ix3 - 512);

IRy_Filt0.add(ly0 - 512);
IRy_Filt1.add(ly1 - 512);
IRy_Filt2.add(ly2 - 512);
IRy_Filt3.add(ly3 - 512);

//Put data through filters

flamex[0] = (int)IRx_Filt0.getMedian();
flamex[1] = (int)IRx_Filt1.getMedian();
flamex[2] = (int)IRx_Filt2.getMedian();
flamex[3] = (int)IRx_Filt3.getMedian();

flamey[0] = (int)IRy_Filt0.getMedian();
flamey[1] = (int)IRy_Filt1.getMedian();
flamey[2] = (int)IRy_Filt2.getMedian();
flamey[3] = (int)IRy_Filt3.getMedian();

for (inti=0;i<4;i++){
if (flamex[i] >= 510) {
IRAlert[i] = NOTHING;
}
else {
IRAlert[i] = DETECTED;
}

}

}

//Update coordinates based on dist distance traveled in dir direction
/lInput dist - Distance traveled
/lInput dir - Direction that distance was traveled
void UpdateCoordinates(float dist, int dir) {
dist = round(dist);
switch (curdir) {
case (UP): coord[1] = coord[1] + dist; break;
case (RIGHT): coord[0] = coord[0] + dist; break;
case (DOWN): coord[1] = coord[1] - dist; break;

54

case (LEFT): coord[0] = coord[0] - dist; break;
}
}

/[Save the location to return to later
/lInput location - x,y coordinates that robot is currently at
void RecordLocation(int location[2]) {
origLoc[0] = coord[0];
origlLoc[1] = coord[1];
origdir = curdir;
origlRCamdir = IRCam_Dir;
}

/[Turn IRCam to face direction

/lInput goaldir - direction to face camera

void IRCam_TurnDirection(int goaldir) {
servoPos = (180 - goaldir * 90);
FlameServo.write(servoPos);
IRCam_Dir = goaldir;

}

/[Turn on fan and correct direction until flame is extinguished
void PulseFan() {

int twocand = 0;

int totr = 0;

int totl = 0;

int swivWind = 50;

/IChecks for two candles
if (IRAlert[1] == DETECTED) {
twocand = 1;

}

//While flame is detected and the candle is within distance, try to extinguish flame
while ((IRAlert[0] == DETECTED) && (USAlert[2] == DETECTED)) {

/[Turn on fan for a second
digitalWrite(fanPin, HIGH);
delay(1000);
digitalWrite(fanPin, LOW);
delay(1000);

//Update sensor data

for (inti = 0; i < IRCam_FiltSize; i++) {
IRCam_GetData();
US_ReadSensors();

}

//If two candles were detected, exit pulse
if ((twocand == 1) && (IRAlert[1] == NOTHING)) {
break;

}

/[Correct direction if candle is slightly offset
else if (IRAlert[0] == DETECTED) {

if (flamex[0] < -swivWind) {

LTurn(240, 10);

55

totl++;

}

else if (flamex[0] > swivWind) {
RTurn(240, 10);

totr++;

}

}

}
/I RTurn(240,10%totr);

/I LTurn(240,10*totl);
}

11.4 Line Sensor Code

/nitialize and calibrate line sensors
void Line_lnitialize() {
intline1 =0;
int line2 = 0;
RunningMedian Line_1_FiltT = RunningMedian(20);
RunningMedian Line_2_FiltT = RunningMedian(20);

//IRead 20 values for the median filter
for (inti=0;i<20*2;i++){
line1 = analogRead(line1Pin);
line2 = analogRead(line2Pin);

Line_1_FiltT.add(line1);
Line_2_FiltT.add(line2);
delay(10);

}

//Select median value of collected data

Line_1_Thresh = Line_1_FiltT.getMedian();

Line_2_Thresh = Line_2_FiltT.getMedian();
}

//IReads in data from the ADC
/[Enable commented lines to use median filter
void Line_ReadSensors() {

Line_1 = analogRead(line1Pin);

Line_2 = analogRead(line2Pin);

/I int line1 = analogRead(line1Pin);
/I int line2 = analogRead(line2Pin);
1

/I Line_1_Filt.add(line1);

/I Line_2_Filt.add(line2);

1

/I Line_1 = Line_1_Filt.getMedian();
/I Line_2 = Line_2_Filt.getMedian();

/[Sets alerts to high if exceeds threshold

if (Line_1 > Line_1_Thresh + LineDif1) {
LineAlert[0] = DETECTED;

}

else {

56

LineAlert[0] = NOTHING;

}

if (Line_2 > Line_2_Thresh + LineDif2) {
LineAlert[1] = DETECTED;

}

else {
LineAlert[1] = NOTHING;

}

}

11.5 Object Avoidance Routines

//Object Avoidance Routine when following a candle

/lInput sThresh - activeate routine if object is below this threshold (cm)

void AvoidFlameObiject(float sThresh) {
int turnnum = random(0, 90); //Degrees to turn
US_ReadSensors(); //Update sensors

/IRight Sensor

//Move slightly left then rescan for candle

if ((USDist[0] < sThresh) && (USDist[0] = -1)) {
Stop(); Reverse(240, 1, 0, 0);
LTurn(240, 10); Stop();
Forward(240, 2, 0, 0); Stop();
RSpinSearch(240, 30); Stop();
ignoretime = 1;

}

//IRight-Middle Sensor

//Move Left 6" then rescan for candle

else if (USDist[1] < sThresh) && (USDist[1] !=-1)) {
Stop(); Reverse(240, 1, 0, 0);
LTurn(240, 90); Stop();
Forward(240, 6, 0, 0); Stop();
RSpinSearch(240, 180); Stop();
LTurn(240, 90); Stop();
ignoretime = 1;

}

/ILeft-Middle Sensor
/IMove Right 6" then rescan for candle
else if (USDist[3] < sThresh) && (USDist[3] != -1)) {
Stop(); Reverse(240, 1, 0, 0);
RTurn(240, 90); Stop();
Forward(240, 6, 0, 0); Stop();
LSpinSearch(240, 180); Stop();
RTurn(240, 90); Stop();
ignoretime = 1;

}

/ILeft Sensor
//Move right slightly then rescan for candle
else if ((USDist[4] < sThresh) && (USDist[4] !=-1)) {
Stop(); Reverse(240, 1, 0, 0);
RTurn(240, 10); Stop();
Forward(240, 2, 0, 0); Stop();
LSpinSearch(240, 30); Stop();

57

ignoretime = 1;

}

//Update Sensor Data
for (inti = 0; i < US_FiltSize; i++) {
US_ReadSensors();
}
}

//Normal Object Avoidance routine

/lInput sThresh - activeate routine if object is below this threshold (cm)

void AvoidObject(float sThresh) {
int turnnum = random(0, 90);
US_ReadSensors();

/IRight Sensor
/IMove slightly left then continue in original direction
if (USDist[0] < sThresh) && (USDist[0] !=-1)) {
Stop();
LTurn(240, 10); Stop();
Forward(240, 4, 0, 0); Stop();
RTurn(240, 10); Stop();
ignoretime = 1;

}

//IRight-Middle Sensor
//Move Left 6" then continue in original direction
else if ((USDist[1] < sThresh) && (USDist[1] !=-1)) {
Stop();
LTurn(240, 90); Stop();
Forward(240, 6, 0, 0); Stop();
RTurn(240, 90); Stop();
ignoretime = 1;

}

//Left-Middle Sensor
//Move Right 6" then continue in original direction
else if (USDist[3] < sThresh) && (USDist[3] != -1)) {
Stop();
RTurn(240, 90); Stop();
Forward(240, 6, 0, 0); Stop();
LTurn(240, 90); Stop();
ignoretime = 1;

}

/ILeft Sensor

/IMove right slightly then continue in original direction

else if ((USDist[4] < sThresh) && (USDist[4] !=-1)) {
Stop();
RTurn(240, 10); Stop();
Forward(240, 2, 0, 0); Stop();
LTurn(240, 10); Stop();
ignoretime = 1;

}

//Update Sensors

58

for (inti=0; i < US_FiltSize; i++) {
US_ReadSensors();
}
}

11.6 Ultrasonic Sensor Code

void US_ReadSensors() {
float USval[NumUS];
float USmaximumRange = 140;
float USminimumRange = 2;
float IRminimumRange = 10;
float IRmaximumRange = 140;

/IReads all Ultrasonic Sensors

USval[0] = Read_Range_US(US0_TrigPin, USO_EchoPin, USminimumRange, USmaximumRange);
USval[1] = Read_Range_US(US1_TrigPin, US1_EchoPin, USminimumRange, USmaximumRange);
USval[2] = Read_Range_US(US2_TrigPin, US2_EchoPin, USminimumRange, USmaximumRange);
USval[3] = Read_Range_US(US3_TrigPin, US3_EchoPin, USminimumRange, USmaximumRange);
USval[4] = Read_Range_US(US4_TrigPin, US4_EchoPin, USminimumRange, USmaximumRange);

//Put data through filter
US_Filt0.add(USval[0])
US_Filt1.add(USval[1]);
US_Filt2.add(USval[2]);
)
)

US_Filt3.add(USval[3]
US_Filt4.add(USval[4]

USDist[0] = US_Filt0.getMedian();
USDist[1] = US_Filt1.getMedian();
USDist[2] = US_Filt2.getMedian();
USDist[3] = US_Filt3.getMedian();
USDist[4] = US_Filt4.getMedian();

//Set alerts to high if distance is less than threshold
for (inti=0;i < NumUS; i++) {
if (USDist[i] == -1) || (USDist[i] > ObjDistThresh)) {
USAlert[i] = NOTHING;
}
else {
USAlert[i] = DETECTED;
}
}
}

//IReads individual ultrasonic sensors

/lInput trigPin - trigger pin for US sensor

/lInput echoPin - echo pin for US sensor

//Input minimumRange - Minimum range able to be read from US sensor

/lInput maximumRange - Maximum range able to be read from US sensor

float Read_Range_US(byte trigPin, byte echoPin, float minimumRange, float maximumRange) {
float distance = -2;
float duration = -2;

digitalWrite(trigPin, LOW);
delayMicroseconds(2);

59

}

/ISend Ultrasonic bursts
digitalWrite(trigPin, HIGH);
delayMicroseconds(25);

digitalWrite(trigPin, LOW);

/IRead pulse from echo pin
duration = pulseln(echoPin, HIGH, 5000);

/[Calculate the distance (in cm) based on the speed of sound.
distance = duration / 58.2;

//If distance is less than the minimun range or greater than the maximum, return -1 as an error code
if (distance >= maximumRange || distance <= minimumRange) {

return -1;
}
else {

return distance;
}

60

