

Beacon Buster
EE382: Intro to Design Final Paper

Anthony Baca

Joseph S. Gabaldon

Joseph Kloeppel

Garrett Newell

May 6, 2014

1 | P a g e

Table of Contents
1. List of Figures .. 2

2. Abstract ... 3

3. Introduction .. 3

4. Requirements .. 4

5. Subsystems ... 4

5.1. Locomotion and Chassis System ... 5

5.2. Power System ... 8

5.3. RF Front End System ... 11

5.4. Control and Data Handling System ... 17

5.5. Post-Processing System .. 22

6. Budget ... 26

7. Timeline ... 26

8. Testing ... 26

9. Final Results .. 27

10. Conclusion ... 28

11. Appendices .. 29

Appendix A: Final Code for Robot ... 29

Appendix B: MATLAB Codes.. 40

Triangulation: .. 40

Demodulation: .. 42

Appendix C: Visual Basic Codes ... 44

Appendix D: Power Budget ... 53

12. References .. 53

DataSheets: ... 53

Code examples: ... 54

2 | P a g e

1. List of Figures
Figure 1: DIK Pyramid .. 3

Figure 2: Subsystem Block Diagram .. 5

Figure 3: Motors and Frame ... 5

Figure 4: Custom Chassis .. 6

Figure 5: Custom Chassis Cuts and Folds .. 6

Figure 6: Custom Antenna Mount .. 6

Figure 7: Final Chassis and Locomotion Build ... 7

Figure 8: Power System Block Diagram .. 8

Figure 9: Motor Controller Block Diagram .. 9

Figure 10: Logic Level Shifter .. 9

Figure 11: 5V Power Regulator Circuit .. 10

Figure 12: 3.3V Power Regulator Circuit ... 10

Figure 13: Proto Board of RF Amplifiers Regulators ... 11

Figure 14: RF Front End System Block Diagram .. 12

Figure 15: Angular Power Received Plot ... 13

Figure 16: Output of Mixer and Band Pass Filter on Spectrum Analyzer ... 14

Figure 17: AD8307 Log Amp Circuit .. 15

Figure 18: Super Diode Peak Detector with Drain .. 16

Figure 19: Schmitt Trigger ... 16

Figure 20: Output of RF Front End System ... 17

Figure 21: Arduino Due ... 18

Figure 22: GPS Module.. 19

Figure 23: Peak Detector Sweep with Moving Average Filter .. 20

Figure 24: Location Stops .. 21

Figure 25: Triangulation Method .. 23

Figure 26: Custom Graphical User Interface ... 24

Figure 27: GUI with Recorded Data .. 25

Table 1: Budget ... 26

Table 2: Timeline ... 26

file:///C:/Users/gnewell/Documents/junior%20design/Beacon%20Buster%20final.docx%23_Toc387152392
file:///C:/Users/gnewell/Documents/junior%20design/Beacon%20Buster%20final.docx%23_Toc387152393

3 | P a g e

2. Abstract
In electronics, locating beacons can be an important tool for various situations. The Beacon Buster

takes the task of finding the GPS coordinates of a beacon emitting a signal to new heights, with state-of-

the-art software and tailor made hardware, all while decoding a Frequency Shift Key signal being

emitted by the beacon. The following information will explain how the Beacon Buster works, as well as

why many of the decisions made in the design were chosen. The various subsystems will also be

explained in detail, and an overview of the final product will be given.

3. Introduction
 As technology becomes increasingly widespread, the ease in which engineers and technologists

collect data also improves; electrical devices, with their various sensors and data acquisition

components, are becoming more and more important in daily life. With the advent of “The Internet of

Things,” as technology moves from the abstract to the physical, this trend will only increase.

 The challenge currently facing the industry is not collecting more data, but collecting useful data

and correctly utilizing it. Robust systems must be designed that can not only acquire all relevant data,

but also correctly interpolate that data into information, and finally supply the technology's users with

usable knowledge. This is recognized as the Data-Information-Knowledge (DIK) Pyramid.

Figure 1: DIK Pyramid

In the DIK Pyramid, extensive data is collected, but often in unusable forms. For a typical

electronics application, this data would at first exist in a purely physical state: voltage levels, radio

frequencies, etc.. It's only when this phenomena is run through an appropriately constructed system

(say an RF receiving circuit or a suite of GPS software) that any meaning of that data can be derived (such

as an encoded message or GPS coordinates). This process can be repeated on new data and information

until knowledge is realized in the required form.

4 | P a g e

 By dealing with data in a systematic nature, we can produce any requested knowledge. This

paper lays out the design of one such system.

4. Requirements
 To design a robot that located the GPS coordinates of a radio beacon emitting a Frequency

Shifted Key (FSK) signal with a baud rate of 600 and alternating frequencies of 2.15GHz and 2.20GHz.

Once located, the robot must decode the signal. Everything must be done autonomously (aside from

Post-Processing). Robot must also meet the following conditions:

 Built with a collection of supplied RF components and motors

 Extra budget of $325

 Completed within duration of the class (1/18 – 5/1)

 Containing a custom part

There were some other notable constraints that had to be accounted for:

 Robot had to operate in an environment with a tested noise floor of -70dBm

 Robot had to deal with reflections off nearby buildings (3-4 stories)

 Robot had to evade nearby concentrated WiFi frequency of 2.4GHz

 Robot had to have a high degree of accuracy that would be under scrutiny

5. Subsystems
 The design of the robot consisted of 5 main subsystems. By dividing the robot in such a way, it

was possible to focus on each individual subsystem as a specific purpose with a set of outputs/inputs (a

desirable pattern of design). This made extensive use of unit testing and prototypes. Such a top-down

approach provided clarity, coordination, and concentration.

Robot consists of the following 5 subsystems (referred to as systems or subsystems, hereafter):

1. Locomotion and Chassis System

2. Power System

3. (Radio Frequency) RF Front End System

4. Control and Data Handling System

5. Post-Processing System

5 | P a g e

Figure 2: Subsystem Block Diagram

The following sections will be a breakdown of each individual system as a single entity.

5.1. Locomotion and Chassis System
The first and most basic system is the Locomotion and Chassis System. This was responsible for

the movement of the robot. The robot was to move in an exact straight line. Once the robot arrived at

its destination, it needed to rotate an antenna up to 180 degrees; this was assuming the location of the

beacon was a given direction.

The Pololu Motor and Chassis Kit was supplied and used for movement. Three wheels on each

side provided stability. Each of the wheel's shocks was suspended to prevent any leeway that would

cause the chassis to lean to one side or the other.

Figure 3: Motors and Frame

6 | P a g e

An extra chassis was built in order to house more electronics. The extra chassis would also be

custom built to support a servo motor to turn the antenna; a hole was cut at the top to allow a rotating

platform to be mounted. This was constructed from a 22 gauge sheet of metal, carefully folded. The

chassis would be bolted down on the Pololu Chassis. The 22 gauge was chosen for its rigidness.

Figure 4: Custom Chassis

Figure 5: Custom Chassis Cuts and Folds

Figure 6: Custom Antenna Mount

7 | P a g e

In order to support a rotating antenna, an antenna support structure was also built. Also made

out of folded sheet metal, this structure allowed an antenna to be hanged on the beams. At the bottom

of this structure is a base bolted onto a rotating ball-bearing platform. This platform is fitted from

underneath with a stationary servo motor that, when activated, rotates the whole support 180 degrees.

The servo is fitted securely between two long beams in the chassis, underneath the antenna support.

This system would receive two different voltages – one for each motor. Each voltage would

drive the motors forward. By supplying two different voltages to each different motor, we were able to

more accurately steer the robot in a straight line; if one side was lagging, the voltage cycle would be

increased to compensate for the restriction.

The system also received a signal for the rotating servo. Each signal would specify the degree at

which the servo should turn to (0 to 180 degrees). By incrementing this value by one degree at a time,

the servo was able to spin in a controlled manner, enabled to scan a wide area.

The final Locomotion and Chassis system is shown in figure 7 safely housing and supporting all

equipment.

Figure 7: Final Chassis and Locomotion Build

8 | P a g e

5.2. Power System
The power subsystem was designed to provide constant, efficient, and reliable power to all

other subsystems. The power subsystem is a critical system to the whole project. The design of the

power subsystem was carefully planned and tested to ensure proper functionality.

To meet the requirement of being fully autonomous the power to every subsystem would have

to be on board. This meant using several different batteries that would effectively power individual or a

series of subsystems. To be able to control the robot more effectively for testing and in the final

configuration a series of switches were implemented. This gives the ability to be able to control

individual or a series of subsystems without having to power the rest of the system. Fuses were installed

with the switches to help protect the sensitive components on board. Figure 8 shows the basic design of

the power subsystem.

Figure 8: Power System Block Diagram

The locomotion and chassis subsystem was supplied so the power requirements were set from

the onset of the design. The batteries that were selected to drive the locomotion subsystem were the

6.6V LiFe batteries that were supplied. These batteries were chosen for the ease of availability and they

could handle the large current loads of the motor banks.

The ability to control the individual banks of motors was first thought to be unneeded but was

discovered later that to be able to have linear motion, control of each motor bank was needed. A motor

controller was designed to receive an input from the microcontroller and to output a steady and

constant power to each motor bank.

9 | P a g e

Figure 9: Motor Controller Block Diagram

The motor controller was a simple N-Channel MOSFET for each bank. The IRF540 is used for the

MOSFET in the design. The DUE microcontroller can output a maximum of 3.3V and the IRF540 had a

VGSTH of 4V. To overcome this voltage difference, a voltage converter is used to drive the IRF540.

Figure 10: Logic Level Shifter

The IRF540 has a max current capability of 2A. The DUE PWM signal has to be scaled down to

approximately 2/3 of full power to keep the current below the 2A. The current used by each motor bank

in the final configuration was 1.92A.

The only other power needed for the locomotion system was for the servo. The servo pull up to

4 amps when being stressed. The DUE had the capability for a short time but instead of stressing the

DUE with a high load, the 6.6V battery was used.

10 | P a g e

The RF Front End system requires significantly more dedicated components for its power. The RF

system had three different voltages needed. The RF amplifiers needed between 4.5V and 6V and each

took 110mA. The demodulation circuit needed a 5V and a 3.3V only taking about 25mA at its peak. The

VCO needed a 5V power supply and a high precision 11.78V for tuning it to the correct frequency. The

draw on the tuning voltage was negligible but the draw on the 5V was approximately 38mA at the

correct frequency. The input to the system needed to be small to minimize the space required on the

robot. The input was limited to one battery capable of supplying all of the system. The 14.8V battery

immediately available was chosen.

To regulate the 14.8V down to 5V and 3.3V the TI LM317 was used. When designing the power

regulators the thermal characteristics had to be kept in mind. The LM317 has a 41 junction to

ambient thermal resistance. The max operating temperature for the LM317 is 125°C. After doing some

quick calculations a maximum current for each regulator was determined.

 ()

 ()

With an input voltage of 14.8V and an output voltage of 5V, each output would be limited to a

maximum current of 245mA. For the 3.3V system the current would be limited to 217mA.

Each RF amplifier has its own designated LM317 to reduce the heat and chance of failure. The

RF demodulation system has a designated 3.3V regulator and a 5V regulator also. Each 5V regulator was

wired the same, seen in figure 11 and the wiring for the 3.3V is shown in figure 12.

Figure 11: 5V Power Regulator Circuit Figure 12: 3.3V Power Regulator Circuit

11 | P a g e

Figure 13: Proto Board of RF Amplifiers Regulators

The tune voltage was created using a potentiometer. This gave the ability to adjust the voltage

as the battery discharged. To improve the design a regulator would be used to create 12V and then a

voltage division to make 11.78V.

The power for the DUE was provided from a 9V battery. The due could be supplied with

anything from 6V to 16V. The 9V was used for the small form factor.

5.3. RF Front End System
The RF Front End system was designed to detect, demodulate and give an accurate value of the

power received. The RF Front End System input was simple, as it was the modulated frequency shift key

(FSK) signal. The FSK signal had two frequencies, 2.15 GHz and 2.2 GHz. The baud of the FSK is 600 Bd.

The outputs were decided to be serial demodulated signal between 0 and 3.3V for the DUE to record

and a voltage level corresponding to the power received.

12 | P a g e

Figure 14: RF Front End System Block Diagram

The antenna supplied in class was tested and proved that it would work in this situation. The

power received was shown to be directional enough to be able to be able to detect when the antenna

was pointing at the beacon from the power received. The noise floor was measured at -70dBm with

signal strength of -40dBm when the antenna was directed at the beacon at a distance of 30-35 yards.

Rough angular power measurements were taken before the decision to use the antenna was used to

show that main lobe of the antenna was discernable enough to be able to distinguish when the antenna

was directly pointing at the beacon. After the build was complete, the antenna was again tested for

angular power received. The results that the Due measured are shown in figure 15. In this test, the Due

would measure the power inputted 150 times to get the most accurate measurement. It can be seen

that the power received is at 90° relative to the robot. The robot was positioned so that the beacon was

exactly 180° from the axis of travel. This test shows that without an abnormality measurement due to

noise that the Due would be able to discern where the beacon is with only about ±1° error.

13 | P a g e

Figure 15: Angular Power Received Plot

The desired power inputted was to be matched to the power output of the VCO. The power

output of the VCO is -7dBm meaning a gain of 33 dBm was needed. The amplifiers that were supplied,

Mini-Circuits ZFL-2500+, gave a gain of -25 dBm. The design originally went with dual stage amplification

and everything is set up to add a secondary amplifier to the system for longer detection. The current

design is only implementing a single stage amplifier. The power into the mixer after the amplification

stage is -15 dBm.

The down converting is done using a Mini-Circuit ZAM-42 frequency mixer. This inputted the

amplified signal and the VCO output to down convert to a 10.5 MHz signal. The VCO was tuned to 2.2105

GHz. The output is 2 frequencies still 50 MHz apart but now at 10.5 MHz and 60.5 MHz, with the lower

frequency representing the 2.2 GHz. The output is sent though a band pass filter to remove the 60 Mhz

signal. The output of the mixer and band pass filter is a 10.5 MHz signal that has a baud of 600 with the

code of the beacon encoded on it.

14 | P a g e

Figure 16: Output of Mixer and Band Pass Filter on Spectrum Analyzer

The RF Front End System demodulating is done on a proto board. The proto board gave higher

quality signals with less noise induced from longer jumper wires. The proto board could also be easily

unplugged and plugged in when needed for testing. The connectors that were chosen were Phoenix

Connector header connectors. The advantages of these connectors were closed leads and there were no

screws needed to make a secure connection. There was no chance of shorting if a cable assembly was

removed from the socket.

 The band pass filter feeds the SMA jack that is located on the top shield. The AD8307

logarithmic amplifier was the crucial part of this design. The AD8307 inputted the signal and outputted a

voltage proportional to the inputted power. Since the 2.15 GHz signal was mixed down and filtered out,

the output of the log amp looked like a dirty version of the code emitted by the beacon. With a -45 dBm

input to the antenna the output of log amp was approximately 1.4V. The noise floor of -70 dBm was

represented with a 0.7V output.

15 | P a g e

Figure 17: AD8307 Log Amp Circuit

The peak detector and Schmitt trigger both used the output of the log amp. To increase the

resolution and ease of use an amplification stage of 1.5 was added after the log amp. The op-amp used

was the MCP6002 because it is a single ended supply that is rail to rail.

 The peak detector was built using a super diode. The ability to quickly discharge the peak

detector was added using a TIP 42 PNP BJT. This ability gives a more accurate power measurement that is

less prone to noise disruptions that could occur when the antenna is swinging around. The peak detector

is built out of a 4.7µF capacitor and a 1kΩ resistor. The time constant for this pair is 4.7ms. To adequately

charge the peak detector without increasing the risk of noise being induced on the measurement a time

of 30mS would be needed from the time of the discharge to the time of reading. The time it takes to

discharge the capacitor is only 10µS.

16 | P a g e

Figure 18: Super Diode Peak Detector with Drain

The Schmitt trigger is an easy and effective way of demodulating the signal. The hysteresis added

with the trigger gave a more accurate and has virtually no errors induced from noise. The Schmitt trigger

used the MCP6002 as well. The inverting pin on the amplifier was connected to a variable voltage so that

the center of the switch could be adjusted if the noise floor or power input was to change. The resistor

values were selected to give ± 200 mV of hysteresis from the center switching voltage. The 200mV made

the noise less of a factor and required the signal to change to get the correct switch. This design has a

required signal to noise difference of at least 15 dBm to get a switch. Without that difference the Schmitt

trigger will not change state properly.

Figure 19: Schmitt Trigger

17 | P a g e

Figure 20: Output of RF Front End System

Figure 20 shows the outputs of the demodulation system. Channel 1 on the oscilloscope displays

the demodulation of the FSK signal. The Schmitt trigger outputs a 0V to 3.3V representing the code

inputted. Channel 2 show the peak detector with periodic drains of the capacitor. This test was run with

a beacon that was not tuned correctly. The beacon was emitting the correct signal but the lower

frequency was shifted up to 2.18 GHz. Even with this much smaller difference in shift the demodulation

circuit was able to demodulate the signal and give a high precision and accurate code. The peak detector

is seen charging and staying constant for approximately 100ms. It is then discharged and charged back

up to the same voltage. This test was done without moving the beacon or antenna and the peak

detector is shown to accurately reproduce the same voltage in reference to the same power received by

the antenna.

5.4. Control and Data Handling System
In any robotic system, the Control and Data Handling portion of the design is extremely critical.

The Control and Data Handling System connects all other systems within the project together, allowing

for a well-integrated design.

 The chosen Microcontroller board for the Beacon Buster was an Arduino Due seen in Figure 21.

The Due is an Arduino Board based on a 32-bit ARM core Microcontroller, the Atmel SAM3X8E ARM

Cortex-M3 CPU. The Arduino Due operates using CMOS technology. Therefore, the logic level for the

Due is 3.3V. With 54 Digital Input/Output ports (12 of which being PWM output capable), 12 Analog

Input ports, 2 Digital to Analog Converters, and 4 hardware serial ports, the Arduino Due was well suited

to control the Beacon Buster.

18 | P a g e

Figure 21: Arduino Due

From the down conversion stage of the RF Front End Subsystem, the Control and Data Handling

System must be capable of handling 600 Hz signals. The Arduino Due has a clock speed of 84 MHz which

is more than sufficient for the design and meets specification. As far as communication goes, the

Arduino Due has a SPI (Serial Peripheral Interface) header, IIC, and four pairs of hardware serial ports.

The Control and Data Handling System utilizes many of the Due's capabilities. The requirements of the

Control and Data Handling System are as follows:

 Control Locomotion (this includes the rotation of the antenna)

 Drain Peak Detector Capacitor

 Record GPS Coordinates

 Record measurements from the Peak Detector Circuitry

 Record the Demodulated Signal from the Beacon

 Save Data to micro-SD interface (Secure Digital non-volatile memory card)

The GPS module chosen was a U-Blox Neo 6M paired with an active antenna. This GPS module was

purchased as a pre-assembled Arduino Shield from iTead Studios seen in Figure 22. The U-Blox Neo 6M

requires a 2.7-3.6V supply which is capable via the Arduino Due's regulated 3.3V supply. The Neo 6M

has an accuracy of 2.5 meters.

19 | P a g e

Figure 22: GPS Module

Communication between the Due and the Neo 6M is achieved using the Arduino Due's

Hardware Serial Ports. Every time the Neo 6M picks up a signal it sends the received Byte through the

Hardware Serial port. When the Beacon Buster is ready for collecting GPS locations, the Control and

Data Handling System waits for 10 signals to be picked up by the GPS unit. Once all 10 signals have been

accounted for, these signals are averaged and then sent to the micro SD card as the current location.

Integrating the micro SD into the Control and Data Handling System was meant to be relatively

seamless due to the "plug-n-play" nature of Arduino Shields. Using the same iTead GPS Shield

mentioned in the section above, a SD card was easily attached and unattached from the system. The SD

was meant to handle the data collected from all subsystems. Using a 32 GB card, there was plenty of

room for storage. Overall, only six files were saved on the memory card each run:

 ANGLE

 AVE

 DEMOD

 GPS

 MAX

 SPOT

ANGLE contained the raw power level measurement from the peak detector at each

corresponding angle. Similarly, AVE contained primarily the same data, only this set being run through a

moving average filter. The filtered data from AVE was used to calculate the angle of maximum power.

20 | P a g e

At each stop, the angle of maximum power was recorded in the MAX text file. Once the antenna is

pointing directly at the angle of maximum power, the Control and Data Handling System begins to

collect the data from the demodulation circuit. This data is recorded straight into the DEMOD file. The

GPS file contained the raw GPS coordinates at each stop. As mentioned in the GPS section, the Control

and Data Handling System collected ten measurements at each location. The average GPS coordinate at

each location was saved to the SPOT file. Using SPOT and MAX, the GPS location of the Beacon is easily

calculated using basic trigonometric identities discussed in section 5.5 below.

For the Peak Detector to work, the Control portion of the Control and Data Handling System was

needed to drain the capacitor before each power measurement. Before each and every measurement, a

3.3V 1 ms pulse was sent to the TIP 42 PNP BJT described in section 5.3. This pulse was implemented

utilizing one of the Arduino Due's Digital to Analog Converter. After a delay of 30 ms, the capacitor had

an ample amount of time to charge up to its maximum voltage which is proportional to the amount of

power received from the beacon. This measurement was collected five times at each angle and then

averaged. This averaged measurement was meant to eliminate unpredicted and incorrect

measurements. After saving the power measurements at each angle both on board and to the memory

card, these measurements were sent through a moving average filter to smooth out the curves. This

filter effectively cleaned up the data, eliminating unwanted spikes as seen below.

Figure 23: Peak Detector Sweep with Moving Average Filter

As the illustration above demonstrates, this moving average filter greatly enhances the Control

and Data Handling System's ability to find the true maximum peak by eliminating obviously incorrect

spikes and narrowing the beam width down to about 5 degrees. This immensely increases the accuracy

of the Beacon Buster by making each angle measurement more precise. This also helps with the

collecting of the demodulated signal.

The Demodulated Signal was collected through one of the Due's Analog Input Ports. This data

was sampled at the angle of maximum power at each location 5000 times. With a 25 microsecond delay

after each sample, each bit was roughly 60 samples long. This sampling rate was determined to read at

least five full message cycles from the beacon. Once all samples have been saved on board, this data

21 | P a g e

was transferred to the SD card. It is important to notice that the Demodulated Signal samples change at

a higher frequency that that of the Baud Rate for writing to the SD card, making it highly critical to save

the Demodulated Signal to the memory card after all samples have been read.

There are two aspects of Locomotion that the Control and Data Handling System must deal with:

controlling the motor driver circuits, and precisely control the angular movement of the antenna. To

drive each motor bank, a PWM signal was sent to the corresponding motor driver circuit. Since the

Locomotion System was built without an orientation feedback system such as a compass, the whole

system relied completely on driving straight. As mentioned before, the completed robot was biased to

the left while driving forward. To compensate for this, each motor bank was independently controlled

using PWM signals with different duty cycles. To begin the driving routine, the left motor bank was

initiated with a PWM signal with a 60.7% duty cycle while the left motor bank was initiated with a PWM

signal with a 52.9% duty cycle. After five seconds, this left motor's PWM duty cycle was increased to

54.9%. After two more seconds, the Beacon Buster would come to an immediate stop. This routine

effectively drove the robot in a straight line from A to B, B to C, C to D, and D to E, Figure 24. Each

distance was roughly five meters in length.

Figure 24: Location Stops

Once stationary at each location, the Control and Data Handling System swept the antenna from

20 degrees to 160 degrees. It was determined that the outer 20 degrees on both extremes were

unnecessary due to the position of the beacon in the field. This decision allowed for quicker and more

efficient tests without creating any possible errors. Using the Servo.h header file provided with the

Arduino Integrated Development Environment, controlling the Servo was both simple and reliable. To

position the Servo at 54 degrees, for example, a single line of code was needed: myServo.write(54). A

very important aspect of the design to note is that the clockwise angle of the antenna with respect to

the Beacon Buster's forward position, is the supplementary angle to that of the angle which must be

22 | P a g e

written to the Servo. For example, to position the antenna 20 degrees from forward, an angle of 160

degrees must be written to the Servo.

5.5. Post-Processing System
The Post-Processing Subsystem was designed to process and interpret the data collected from

the Control and Data Handling Subsystem and output the results in an efficient, easy to read manner.

Thus, the inputs to the Post-Processing Subsystem were the data which was collected from the Control

and Data Handling Subsystem. This included the GPS coordinates at each location, the angle of max

power at each location, and the decoded FSK signal at the angle of max power. Using sophisticated

algorithms, as well at the data inputs, the outputs of the Post-Processing Subsystem were the GPS

coordinates of the beacon in the courtyard, as well as the decoded FSK signal, represented using eight

bits (ones or zeroes).

As mentioned earlier, to implement the Post-Processing Subsystem we used two sophisticated

algorithms. The first of these algorithms was used to process the data taken from the analog to digital

converter which was recording the decoded signal. When creating this algorithm, we had to take many

factors into account. The first of these factors was that the analog to digital converter (which was a 10

bit ADC) gave values of 1000-1024 for a high and values of 0-20 for a low, although we wanted out signal

in 1s and 0s. To change this, we used a threshold and a for loop that ran through the collected data

which would turn all of the values above 512 (half of 1024) to 1s (high) and all the values below 512 to

0s (low). Thus, we had an array of only 0s and 1s. The next factor we had to take into account was the

sampling rate at which we collected data relative to the baud rate of the FSK signal, which was 600 Bd.

To control the rate at which we sampled the decoded signal, we used delays in our code between each

sample. Thus, we were able to control the amount of data points that were collected per bit. We found

that with a 25 millisecond delay we were able to collect 60 data points per bit. Another factor we had to

take into account was where we started collecting data. More often than not we would begin in the

middle of a bit. Also, we could start collecting data in the middle of our signal. To counter these facts,

we decided that we must find the location in our decoded signal of the first data point of the start bit,

which would be a zero. To do this, we looked at the first data point collected. If the first data point

collected was a one, we would then delete all of the ones in front of it until we got to a zero. We would

then delete the next ten bits (600 data points). This ensured that even if we began in the middle of our

signal the program would not get confused. After deleting the next ten bits we would always land on a

one. We would then delete all of the ones until we got to a zero again. This zero would always be the

first data point of the start bit. If instead our first data point collected was a zero, we would start by

deleting the first ten bits (600 data points) which would always take us to a one. We would then delete

all of the ones until we got to a zero, which would be the first data point of the start bit. Now that we

were insured that we started at the first data point of the start bit, we would then average 60 data points

in subsequent order and then round the value we got. Thus, we would average the first 60 data points

and round the value, and save it, then we round the next 60 data points, round the value, and save it

again. If we did this nine times we would get our decoded signal out, including the start bit. This

23 | P a g e

algorithm was created in the way that it was to ensure that it was a robust system in which the signal we

were decoding did not matter, nor did the location at which we began collecting data mattered.

The next algorithm we implemented was the triangulation algorithm, which was used to locate

the beacon. Using figure x the algorithm will be explained.

Figure 25: Triangulation Method

The steps of this algorithm are fairly straight forward. We know all of the angles, as well as the distance

between each points. We use the distance (labeled x) and two subsequent angles theta(n) and

theta(n+1), as well as the Law of Sines to find the hypotenuse for each triangle. Once we have that data,

we use the hypotenuse of each triangle to find an xtot and ytot. Depending on if the angle theta(n) is less

than 90 degrees or greater than 90 degrees, we do different calculations. If theta(n) is less than 90

degrees, then we just use sine and cosine to find xtot and ytot. From the figure, we see that ytot(n) =

hyp(n)*sin(theta(n)). Also from the figure, we see that xtot = hyp(n)*cos(theta(n)) + x*(n-1). We have to

add x*(n-1) because if we do not we just get the adjacent length of the triangle that theta(n) makes,

rather than all of xtot. If theta(n) is greater than 90 degrees we do very similar calculations, the only

difference comes from the fact that the angles used in our triangles are going to be 180 minus our

obtained angle. Using this consideration, we can find xtot and ytot for these locations as well. Now, if the

angle is equal to 90 degrees, then our xtot value is just our obtained location and our ytot value is the

hypotenuse obtained from earlier. Thus, xtot = x(n) and ytot = hyp(n). We now have values for xtot and ytot

at each of the locations. The values should all be fairly close to each other. Thus, we then average all of

the values to get our final value. Something to note is that these calculations are with respect to a

starting point of (0,0) on the (x,y) axis. Thus, to get the correct location we must offset our final answer

by the location of our starting point. Another note is that we applied this algorithm to an array which

represented the pixels of an image (the courtyard). To get the GPS coordinates from this array we used a

conversion factor from our x values of the array and our y values of the array. Thus, we took our GPS

coordinates at each location, converted these locations to the pixel values of the image, applied the

triangulation algorithm to the pixel values which gave us a single pixel, and then converted this pixel

value back into a GPS value.

24 | P a g e

 The two preceding algorithms were created and tested on MATLAB. Using these two algorithms,

we were able to find both the GPS coordinate of the beacon as well as interpret and display the eight

bits of the decoded FSK signal. We wanted to be able to read the processed results in an efficient, easy

to read manner. To accomplish this goal we decided to implement a Graphical User Interface using

Visual BASIC. We converted the MATLAB code to BASIC code with ease, with problems only arising from

the change of index between the two languages. This turned out to be an excellent idea, as the ease of

the GUI is notable. Figure x is an image of the GUI.

Figure 26: Custom Graphical User Interface

The GUI has four clickable buttons as well as three input parameters. The first parameter is used to

change the amount of data points per bit, if we were able to change that in the Control and Data

Handling Subsystem. The next parameter changes the amount of locations we stopped at, while the last

value changes the threshold at which to change the values from the ADC to 1s and 0s. The top left

button, the bottom left button, and the bottom right button are used to load the location data at each

stop, the decoded signal data, and the angle of max power data at each stop, respectively. Clicking each

of these buttons will allow us to choose the data from the SD card on the computer. When we press the

top right button, labeled “Triangulate,” we get the desired outputs displayed on the GUI. Figure x

illustrates what occurs after “Triangulate” is pressed.

25 | P a g e

Figure 27: GUI with Recorded Data

 As you can see, all of the data we desired is displayed on the GUI. In the top left corner we have the

GPS location of the beacon displayed in longitude and latitude. On the image of the courtyard we see

our three stops on the map, as well as the angle at which the angle of max power was recorded for each

stop. Also on the image we see a yellow circle, which is placed where the GPS location of the beacon

should be. For this data set, we had the beacon on a table, and the yellow circle is very close to the

table. Thus, we are very accurate and precise. To the upper right we see that the GPS locations and the

angles of max power are saved in a table, and to the lower right we see our collected data from the ADC

for the decoded signal. Also, above this plot of the ADC data we see the output from our first algorithm,

which is a 9 bit (including the start bit) binary representation of the FSK signal. Similar results occur if we

change the location of the beacon or the FSK signal being emitted by the beacon. The Graphical User

Interface was very helpful because it allowed us to load the data in a very smooth, easy manner, and it

displayed the results in a manner which was easy to interpret and efficient to use.

The results from the Post-Processing Subsystem are exactly what we expect. The system produces the

exact results which we desired, which were the GPS coordinates of the beacon as well as the 8 bit

representation of the encoded FSK signal.

26 | P a g e

6. Budget
Table 1: Budget

Part Cost

Arduino Due $39.99

GPS Shield $57.99

Chassis Material $44.50

Arduino Protoboards 2x19.99 = $39.98

Circuit Components $54.60

Servo $11.79

Miscellaneous Parts $50

Total $298.85

7. Timeline
Table 2: Timeline

Date Task Completed

February 4, 2014 Parts Ordered and Chassis Complete
February 13, 2014 Conceptual Design Review
February 14, 2014 Locomotion Run
March 1, 2014 Began RF System Design and Order Parts
March 11, 2014 Midterm Functionality and Design
March 15, 2014 Began Implementation of GPS and Algorithms
April 1, 2014 Breadboard Power and RF System Together
April 15, 2014 Begin Soldering of Circuits on Proto boards
April 22, 2014 Integrate GPS, Algorithms, Due Code, and GUI together
April 24, 2014 Soldered/Tested Circuits on Due Proto boards
April 26, 2014 Integration of all subsystems
April 28, 2014 Fully Functional, Testable Robot
April 29, 2014 Final Functionality and Design
May 1, 2014 Final Presentation
May 6, 2014 Final Report

8. Testing
The majority of the testing happened before the final integration. Knowing the inputs and outputs of

each subsystem and the interconnects between the subsystems before the design of each individual

system, each of the inputs could be simulated accurately to test the system without needing to have

every subsystem built. This reduced testing time required once the whole robot was built.

27 | P a g e

The locomotion and chassis system was tested fully once the complete robot was assembled. The

custom chassis was built and verified to fit and the ball bearing was spun to verify that it provided a low

resistance 180° rotation.

The testing of the power system was easy to simulate in the lab. Each regulator was built and loaded

either with the load or a simulated load. The motor driver was tested using the chassis and the Due for

the control signal. This test also gave a rough power draw of the motors. There was an error in this

measurement because the robot was not fully loaded. The testing of the regulators was done by

simulating the load with the actual amplifiers. The demodulating power regulators were tested by

simply connecting them to a 100Ω load.

The RF system testing was done using the beacon and the antenna. This input was harder to

simulate than other inputs. The whole circuit was built on a bread board and was tested. The output was

verified to work using an oscilloscope. The bread board gave the ability to change low pass filters and

different gains on the amplifiers. This testing gave the final values of each filter and gain making testing

once the circuit was on a proto board very simple.

The control and data handling was tested using a function generator to simulate the inputs from the

RF front end system. The GPS had to be tested outside to receive an accurate signal but the relied on no

other input so it could be tested fully without any other system. The same went with the SD card. The

testing was done using simulated data. The rotation of the antenna and movement was done in the lab.

This gave a close to accurate values on driving straight. The final testing was performed outside to

ensure the linear movement translated to the outside on a different surface. Some tweaking had to be

done to correct for drifts once a full cycle was performed.

The testing of the post processing was simple and effective. The output of the control and data

handling system was very easy to simulate. This was fed into the GUI and shown to work. By changing

the input slightly the GUI was shown to effectively process the data and parse it into useful information.

The testing of the whole system was fairly simple once the other systems were proven to work. The

MCP6002 failed several times while doing a full test. This caused issues with over drawing the power

system and under powering other components. After the third MCP6002 failed after working in the RF

front end system individually, the thought was that static discharge was causing the failure. More

filtering capacitors were added to the system and an amplifier prone to failure was moved to the lower

shield so that there was less chance of a static discharge from a tester touching it while plugging and

unplugging cables.

9. Final Results
The Beacon Buster was finished by the deadline of May 1st. It was shown to accurately locate the

beacon and demodulate the signal emitted from the beacon. The final build is seen in section 5.1. The

Beacon Buster has repeatedly been tested with different beacons and with different location. The tests

28 | P a g e

have always been within the margin of error with the demodulation always working when the robotis in

tune.

10. Conclusion
 In the technological age, the way we as a species complete tasks becomes increasingly

automated and repeatable. It allows us to go beyond what we had originally thought possible, with

ideas only our imaginations could conjure.

We were tasked with creating a piece of technology which needed to autonomously perform

several tasks, and do these tasks in an efficient, precise, and reliable manner. The Beacon Buster was to

autonomously locate a beacon emitting a Frequency Shift Key signal, as well as decode that signal. It

met these goals, as it can produce the GPS coordinates of the beacon within a very reasonable range of

ten meters, as well as decode the FSK signal. The location of the beacon does not matter, nor does the

encoded message of the FSK signal, for the Beacon Buster to complete its task.

The task of completing the Beacon Buster was subject to many constraints. The first constraint

was to have a reliable, working robot by May 1, 2014. This constraint was met, as the robot was

completed by April 29, 2014. The next constraint was that the robot must be completed within a budget

of $325. As evidence from our accurate budget table, we spent ~$300, which allowed us to meet our

budget constraint. The third constraint was that we must include a custom part in our design when

completing the Beacon Buster. We not only included one custom part, but many. We had a custom

chassis, custom MOSFET motor drivers, a custom power system, a custom circuit for demodulation, and

a custom Graphical User Interface. Thus, our third and final constraint was met beyond expectation.

We met all of the goals asked of us subject to all of the constraints. The Beacon Buster is a reliable

robot which can produce the GPS coordinates and the demodulated message from the FSK signal

repeatedly and accurately. The Beacon Buster can be picked up and used by anyone due to its ease of

use, but can also be used for more complex, analytically manners due to its sophistication. As a

prototype for future designs and manufacturing purposes, the Beacon Buster is an optimal choice for

automated, beacon finding, and code cracking consumers.

29 | P a g e

11. Appendices

Appendix A: Final Code for Robot
#include <SPI.h>

#include <SD.h>

#include <TinyGPS.h>

#include <Servo.h>

TinyGPS gps;

/

THIS IS THE COMPLETED TEST CODE FOR BEACON BUSTER

*/

//////////////////////////PINOUT//////////////////////////////

////Digital////

//13:SPI(CLK)

//12:SPI(MOSI)

//11:SPI(MISO)

//10:SPI (CS)

//9:SERVO

//8:

//7:

//6:

//5:Left HBridge

//4:Right HBridge

//3:GPS SERIAL RECEIVE

//2:GPS SERIAL TRANSMIT

30 | P a g e

//1:SERIAL

//0:SERIAL

////Analog////

//A0:Demod In

//A1:PWR Detect In

//DAC1:

//DAC2:

//Digital Declarations

int leftMotorPin = 4; //Left HBridge

int rightMotorPin = 5; //Right HBridge

int Analog0 = 0; //Demod In

int Analog1 = 1; //PWR Detect In

////////////////////////PINOUT END////////////////////////////

//The Arduino Due has three 3.3V TTL serial ports: Serial1 on pins 19(RX) and 18 (TX);

Servo myServo;

//int motPin = 8;

int angle;

//int angles[180];

int peakVal;

int maxPeak = 0;

int maxPeakVal = 0;

int peak2;

int t; //average angle vals

int peaks[140];

31 | P a g e

int findpeak[140];

int m;

//For Demod

int demod;

int k;

int array[5000];

//GPS

float latt;

float longg;

int i; //Number of GPS Locations Loop

int j; //Number of Stops Loop

int runtest = 1; //Run Test Condition

/**

Function: setup

Purpose: set up Arduino

Args: none

Returns: nothing

Notes: This function is required by the Arduino

***/

void setup()

{

 //Turn off power to motors

 analogWrite(leftMotorPin,0); //Drive at half speed

 analogWrite(rightMotorPin,0); //Drive at half speed

 delay(2000);

32 | P a g e

 //Connect Servo

 myServo.attach(9);

 // Serial monitor

 Serial.begin(9600);

 // baud rate for GPS - 38400 is prefered, but 4800 can also be used

 Serial1.begin(38400); //Serial1 on pins 19(RX) and 18 (TX)

 // Initialize card

 Serial.print("Initializing SD card...");

 pinMode(10, OUTPUT);

 if (!SD.begin(10)) {

 Serial.println("...initialization failed!");

 }

 else

 Serial.println("...initialization done.");

}

/**

Function: loop

Purpose: loop funtion for Arduino

Args: none

Returns: nothing

Notes: This function is required by the Arduino, and the

 Arduino will loop through this function indefinately.

33 | P a g e

***/

void loop(){

 if (runtest ==1){

 //for (j=0;j<3;j++){

 for (j=0;j<5;j++){

/////////////////////////////GPS//

 File GPSdata = SD.open("GPS.txt", FILE_WRITE);

 GPSdata.println("Start");

 GPSdata.close();

latt = 0; //Redeclare

longg = 0;

 for (i=0;i<=10;i++){

 bool newData = false;

 unsigned long chars;

 unsigned short sentences, failed;

 // Open data file

 File GPSdata = SD.open("GPS.txt", FILE_WRITE);

 int gett = 1;

 int incomingByte = Serial1.read();

 while (gett == 1){

 ///

 if (Serial1.available() > 0) {

 incomingByte = Serial1.read();

34 | P a g e

 if (gps.encode(incomingByte))

 gett = 0;

 float flat, flon;

 unsigned long age;

 gps.f_get_position(&flat, &flon, &age);

 GPSdata.print(flat == TinyGPS::GPS_INVALID_F_ANGLE ? 0.0 : flat*1000000);

 latt = latt + (flat == TinyGPS::GPS_INVALID_F_ANGLE ? 0.0 : flat);

 GPSdata.print(",");

 GPSdata.print(flon == TinyGPS::GPS_INVALID_F_ANGLE ? 0.0 : flon*1000000);

 longg = longg + (flon == TinyGPS::GPS_INVALID_F_ANGLE ? 0.0 : flon);

 }//if gps.encode(encomingByte)

 }//if serial1.available()>0

 //

 } //while gett = 1;

 GPSdata.println("");

 GPSdata.close();

 }//for i = 0

 latt = (latt/11)*1000000; //Average Latitude (these both are Integers so we multiply by a factor of

10^6 and divide by the same factor in post processing)

 longg = (longg/11)*1000000; //Average Longitude

 File Locationdata = SD.open("Spot.txt", FILE_WRITE);

 if (Locationdata) {

35 | P a g e

 Locationdata.print(latt);

 Locationdata.print(",");

 Locationdata.println(longg);

 Locationdata.close();

 }

//////////////////////////////////GPS END//////////////////////////////////////

//////////////////////////////////Servo//

angle = 160;

m = 0;

 File Angledata = SD.open("Angle.txt", FILE_WRITE);

 if (Angledata) {

 Angledata.println("Start");

 Angledata.close();

 }

while(angle!=20)

{

 myServo.write(angle); //Rotate Servo

 analogWrite(DAC1,255); //1ms pulse to discharge peak capacitor

 delay(1); //

 analogWrite(DAC1,0); //30ms low to charge up peak capacitor

 delay(30);

 peakVal = analogRead(Analog1);

 for(t=0;t<4;t++){

 analogWrite(DAC1,255); //1ms pulse to discharge peak capacitor

 delay(1); //

36 | P a g e

 analogWrite(DAC1,0); //30ms low to charge up peak capacitor

 delay(30);

 peakVal = peakVal + analogRead(Analog1);

 }

 peakVal = peakVal / 5;

 peaks[m] = peakVal;

 File Angledata = SD.open("Angle.txt", FILE_WRITE);

 if (Angledata) {

 Angledata.println(peakVal);

 Angledata.close();

 }

 m++;

 angle--;

 }

 ///////////Moving Average Filter//////////////////

 File Avedata = SD.open("Ave.txt", FILE_WRITE);

 if (Avedata) {

 Avedata.println("Start"); //Write "Start" to Ave.txt

 Avedata.close();

 }

 for(m=0;m<140;m++){

 if(m<5){

 findpeak[m] = 0;

 }

37 | P a g e

 else if (m>134){

 findpeak[m] = 0;

 }

 else{

 findpeak[m] = (peaks[m-5] + peaks[m-4] + peaks[m-3] + peaks[m-2] + peaks[m-1] + peaks[m] +

peaks[m+1] + peaks[m+2] + peaks[m+3] + peaks[m+4] + peaks[m+5])/11;

 if(findpeak[m] > maxPeakVal)

 {

 maxPeakVal = findpeak[m]; //save the maxPeakVal for peak comparison

 maxPeak = 160-m; //save the max angle

 }

 }

 File Avedata = SD.open("Ave.txt", FILE_WRITE);

 if (Avedata) {

 Avedata.println(findpeak[m]); //Record the Averaged Peak Detector Data

 Avedata.close();

 }

 }

///////////Moving Average Filter END//////////////////

File Maxdata = SD.open("Max.txt", FILE_WRITE);

 if (Maxdata) {

 Maxdata.println(maxPeak); //Record the MAX PEAK ANGLE to MAX.txt

 Maxdata.close();

 }

 //Return the Servo to maxPeak in increments of 1 degree every .2 seconds

38 | P a g e

 angle = angle + 1;

while(angle!=maxPeak)

{

 myServo.write(angle);

 delay(200);

 angle++;

}

////////Demod///////////////

//Save demod signal to array

for(k=0;k<4999;k++){

 array[k] = analogRead(Analog0);

 delayMicroseconds(25); //A 25microSecond Delay should create a 60dp/bit message, recording about

5400 dp = 6 messages

 }

 //Send demod signal to SD

 for(k=0;k<4999;k++){

 File Demoddata = SD.open("Demod.txt", FILE_WRITE);

 if (Demoddata) {

 Demoddata.println(array[k]);

 Demoddata.close();

 }

 }

//////Demod END////////////

 //Return the Servo to home

 angle = angle + 1;

39 | P a g e

while(angle!=160)

{

 myServo.write(angle);

 delay(200);

 angle++;

}

maxPeakVal = 0; //Redeclare maxPeakVal = 0

delay(1000);

//////////////////////////////////Servo END////////////////////////////////////

/////////////////////////////////////Drive/////////////////////////////////////

 analogWrite(leftMotorPin,155); //Drive at half speed

 analogWrite(rightMotorPin,135); //Drive at half speed

 delay(5000); //Continue for x ms

 analogWrite(leftMotorPin,155); //Stop 150

 analogWrite(rightMotorPin,140); //Stop 150

 delay(2000);

 analogWrite(leftMotorPin,0); //Stop

 analogWrite(rightMotorPin,0); //Stop

 delay(1000); //Pause for x ms

/////////////////////////////////////Drive END///////////////////////////////////

 }//for j = 0 to 4

 runtest = 0;

 }//if runtest = 1

 analogWrite(leftMotorPin,0); //Stop

40 | P a g e

 analogWrite(rightMotorPin,0); //Stop

 delay(1000); //Pause for x ms

}//Main Loop

/*PSUEDO CODE

1:Initialize Variables

2:Set-up

3:Average GPS Data (Write To GPS file)

 Sweep Servo/Record peakValues

 Return Serov to Max Peak

 Save Signal Data (Write to Signal file)

 Return Servo

4:Drive for x-seconds

5:Repeat from Step 3

*/

Appendix B: MATLAB Codes

Triangulation:
function [xo,yo] = triangulatetest(x,y,angle)
%A MATLAB function which finds the x and y coordinates of point using the
%angles the point makes with a straight path at several known locations
%x is a list of x coordinates at several locations
%y is a list of y coordinates at several locations
%angle is the angle that points directly at the location we are trying to
%find from the (x,y) point with respect to a linear path
%xo is the x coordinate of the loaction we are trying to triangulate
%yo is the y coordinate of the loaction we are trying to triangulate

41 | P a g e

%we use n to find the length
n = length(x);

%we initialize these vectors filled with zeroes for speed
%xlength is one element shorter because it measures the lengths between
%subsequent x values, and thus there is one less distance then there are
%points
hyp = zeros(size(x));
xlength = zeros(length(x) - 1);
ytot = zeros(size(y));
xtot = zeros(size(y));

%this gets the distance between each x value and saves it into xlength
for i = 1:n-1

 xlength(i) = x(i+1) - x(i);

end

%this produces the first hypotenuse value using the Law of Sines
hyp(1) = xlength(1)*(sind(180 - angle(2))/sind(angle(2) - angle(1)));

%again using the Law of Sines we find all of the hypotenuse values
for i = 2:n

 hyp(i) = xlength(i-1)*(sind(angle(i-1))/sind(angle(i) - angle(i - 1)));

end

%here, we calculate xtot and ytot, which are the x and y coordinates found
%for the coordinate we are searching for (we will then average them)
for i = 1:n

 %if the angle is less than 90 degrees we use sine to find ytot and xtot
 if angle(i) < 90

 ytot(i) = hyp(i)*sind(angle(i));
 xtot(i) = hyp(i)*cosd(angle(i));

 %we are not completely done with xtot because we also have to add
 %the previous values for xlength to xtot to get all of xtot
 for j = 2:i

 xtot(i) = xtot(i) + xlength(j-1);

 end

 %if the angle is greater than 90 degrees we do something very similar
 %to the above process just with the angle subtracted by 180
 elseif angle(i) > 90

42 | P a g e

 ytot(i) = hyp(i)*sind(180 - angle(i));
 xtot(i) = hyp(i)*(sind(angle(i) - angle(1))/sind(angle(1)) - cosd(180

- angle(i)));

 %if the angle is equal to 90 degrees than we have that xtot is equal to
 %x value we have and ytot is equal to the hypotenuse measured
 else

 ytot(i) = hyp(i);
 xtot(i) = x(i);

 end

end

%we now have an array called xtot and ytot filled with values for our
%output. We average the values in each array and set them equal to our
%outputs
yo = mean(ytot);
xo = mean(xtot);

end

Demodulation:
function [decoded] = decodesig(x,approximate_datapoints)
%A MATLAB function which takes the values from the ADC that is collecting
%the data from the demodulation circuit and outputs the signal in a 9 bit
%(including the start bit) representation of binary zeroes and ones.
%x is the data obtained from the ADC
%approximate_datapoints is the approximate amount of datapoints which
%represent each bit
%decoded is the output, which gives the message from the FSK in a 9 bit
%format of zeroes and ones

%here, we find n so that we could loop through x
n = length(x);

%we initialize the decoded array for speed
decoded = zeros(1,9);

%this bloack changes all of the values of the array x that are above 512
%to 1 and below 512 to 0
y = find(x<512);
encoded = ones(1,n);
encoded(y) = x(y);
encoded(y) = 0;

%we use a ten percent error of our approximate datapoints to find the exact
%amount of datapoints per bit
tenperror = round(.1*approximate_datapoints);

43 | P a g e

%these are used to check whether values are zeroes or ones in the next
%block of code
check1 = 1;
count1 = 0;
check2 = 1;
count2 = 0;
check3 = 1;
count3 = 0;
check4 = 0;
count4 = 0;

%we check what value we start with which depends on
if encoded(1) == 1

 %if we begin with a one, we delete ones until we get to a zero
 while check1 == 1

 count1 = count1+1;
 check1 = encoded(count1);

 end

 %which is what we do here
 encoded(1:count1-1) = [];

 %this deletes the next 10 bits which will effectively put us in ones
 %again
 encoded(1:10*approximate_datapoints) = [];

 %and here, we delete all of the ones until we get to a zero again,
 %which will always be our start bit
 while check2 == 1

 count2 = count2+1;
 check2 = encoded(count2);

 end

 encoded(1:count2-1) = [];

else

 %if we start of with a zero, we immediately delete the next ten bits
 %which will put us in ones again
 encoded(1:10*approximate_datapoints) = [];

 %we then delete ones until we get to the start bit (0)
 while check3 == 1

 count3 = count3+1;
 check3 = encoded(count3);

44 | P a g e

 end

 encoded(1:count3-1) = [];

end

%we then check how many zeroes are present
while check4 == 0

 count4 = count4+1;
 check4 = encoded(count4);

end

count4 = count4 - 1;

%using the amount of zeroes presetn and the approximate data points in a
%bit, we use this block to determine the exact amount of datapoints in
%each bit
for j = 1:8

 if count4<(approximate_datapoints+tenperror)*j

 if count4>(approximate_datapoints-tenperror)*j

 datapoints = round(count4/j);

 end

 end

end

%we check from 1 to datapoints, and take the average of these values, and
%round it up
decoded(1) = round(mean(encoded(1:datapoints)));

%we then do the same average the round for each block of datapoints
for i = 2:9

 decoded(i) = round(mean(encoded((i-1)*datapoints:i*datapoints)));
end
%this effectively gives our output as a 9 bit binary message
end

Appendix C: Visual Basic Codes
Public Class Form1
'Initialize Variables
 Dim lat As Double
 Dim lng As Double

45 | P a g e

 Dim x0 As Integer = 18
 Dim y0 As Integer = 124
 Dim x0_long As Double = -106.907817
 Dim y0_lat As Double = 34.066976
 Dim conv As Double = 0.0000015 'Conversion factor for converting longitude to pixel
(x)
 Dim yconv As Double = 0.00000124'Conversion factor for converting latitude to pixel
(y)

 Dim xval As Integer
 Dim yval As Integer

 Dim x1_long As Double = -106.906827
 Dim y1_lat As Double = 34.066386

#Region "Triangulate"
 Private Sub TriangulateButton_Click(sender As System.Object, e As System.EventArgs)
Handles TriangulateButton.Click

 Dim xx(TextBox2.Text - 1) As Integer
 Dim yy(TextBox2.Text - 1) As Integer
 Dim ang(TextBox2.Text - 1) As Integer
 Dim angrad(TextBox2.Text - 1) As Double

'This Sub is activated once the Triangulation Button is Clicked.
'It loads up the previously declared variables, xx,yy,ang,angrad with the data
' from the Data Grid. It also positions the yellow boxes according to
' their Latitude and Longitude which uses the conversion factor to convert
' to pixels position on the image. From here, we also use the angles at each
' location to draw a yellow line across the image with the corresponding angle
' This displays their intersections based off of the angles and gps coordinates
' to provide a visual aide when viewing our data

 lat = DataGridView1.Rows(0).Cells(1).Value
 lng = DataGridView1.Rows(0).Cells(2).Value
 xval = Math.Round((lng - x0_long) / conv)
 yval = Math.Round((y0_lat - lat) / yconv)
 Position1.Location = New Point(xval, yval)

 Position1.BringToFront()

 xx(0) = xval
 yy(0) = yval
 ang(0) = DataGridView1.Rows(0).Cells(3).Value
 Line1.X1 = xval
 Line1.Y1 = yval
 Line1.Y2 = 600
 Line1.X2 = 1 / Math.Tan(ang(0) * Math.PI / 180) * (600 - yval) + xval
 '///
 lat = DataGridView1.Rows(1).Cells(1).Value
 lng = DataGridView1.Rows(1).Cells(2).Value

46 | P a g e

 xval = Math.Round((lng - x0_long) / conv)
 yval = Math.Round((y0_lat - lat) / yconv)
 Position2.Location = New Point(xval, yval)
 Position2.BringToFront()

 xx(1) = xval
 yy(1) = yval
 ang(1) = DataGridView1.Rows(1).Cells(3).Value
 Line2.X1 = xval
 Line2.Y1 = yval
 Line2.Y2 = 600
 Line2.X2 = 1 / Math.Tan(ang(1) * Math.PI / 180) * (600 - yval) + xval
 '//
 lat = DataGridView1.Rows(2).Cells(1).Value
 lng = DataGridView1.Rows(2).Cells(2).Value
 'Position3.Location = New Point(lat, lng)
 xval = Math.Round((lng - x0_long) / conv)
 yval = Math.Round((y0_lat - lat) / yconv)
 Position3.Location = New Point(xval, yval)
 Position3.BringToFront()

 xx(2) = xval
 yy(2) = yval
 ang(2) = DataGridView1.Rows(2).Cells(3).Value
 Line3.X1 = xval
 Line3.Y1 = yval
 Line3.Y2 = 600
 Line3.X2 = 1 / Math.Tan(ang(2) * Math.PI / 180) * (600 - yval) + xval
 '//
 'Try
 If TextBox2.Text = "4" Or TextBox2.Text = "5" Then

 lat = DataGridView1.Rows(3).Cells(1).Value
 lng = DataGridView1.Rows(3).Cells(2).Value
 xval = Math.Round((lng - x0_long) / conv)
 yval = Math.Round((y0_lat - lat) / yconv)
 Position4.Location = New Point(xval, yval)
 Position4.BringToFront()

 xx(3) = xval
 yy(3) = yval
 ang(3) = DataGridView1.Rows(3).Cells(3).Value
 Line4.X1 = xval
 Line4.Y1 = yval
 Line4.Y2 = 600
 Line4.X2 = 1 / Math.Tan(ang(3) * Math.PI / 180) * (600 - yval) + xval
 Line4.Show()
 Line4.BringToFront()
 Position4.Show()
 Else
 Line4.Hide()
 Position4.Hide()
 End If

 If TextBox2.Text = "5" Then
 lat = DataGridView1.Rows(4).Cells(1).Value

47 | P a g e

 lng = DataGridView1.Rows(4).Cells(2).Value

 xval = Math.Round((lng - x0_long) / conv)
 yval = Math.Round((y0_lat - lat) / yconv)
 Position5.Show()
 Position5.Location = New Point(xval, yval)
 Position5.BringToFront()

 xx(4) = xval
 yy(4) = yval
 ang(4) = DataGridView1.Rows(4).Cells(3).Value
 Line5.X1 = xval
 Line5.Y1 = yval
 Line5.Y2 = 600
 Line5.X2 = 1 / Math.Tan(ang(4) * Math.PI / 180) * (600 - yval) + xval
 Line5.Show()
 Line5.BringToFront()
 Else

 Line5.Hide()
 Position5.Hide()

 End If

'Convert our degree angles to radians
 For i As Integer = 0 To TextBox2.Text - 1 '2
 angrad(i) = ang(i) * Math.PI / 180
 Next
 Try
 Triangulate(xx, yy, angrad) 'Do Triangulate Function

 Catch ex As Exception
 MsgBox("Error! Check Number of Locations")
 End Try

 End Sub

 Function Triangulate(ByVal x() As Integer, ByVal y() As Integer, ByVal angle() As
Double) As Double
 'View MATLAB CODE, this function is the same, only converted to VB.Net

 Dim n As Integer = x.Length - 1
 Dim hyp(n) As Double 'hyp(4)
 Dim xlength(n - 1) As Double '0 1 2 3
 Dim ytot(y.Length - 1) As Double
 Dim xtot(y.Length - 1) As Double

 Dim xo As Double = 0
 Dim yo As Double = 0

 For i As Integer = 0 To n - 1

48 | P a g e

 xlength(i) = x(i + 1) - x(i)
 Next

 hyp(0) = xlength(0) * (Math.Sin(Math.PI - angle(1)) / Math.Sin(angle(1) -
 angle(0)))

 For i As Integer = 1 To n
 hyp(i) = xlength(i - 1) * (Math.Sin(angle(i - 1)) / Math.Sin(angle(i) -
 angle(i - 1)))
 Next

 For i As Integer = 0 To n
 If angle(i) < Math.PI / 2 Then
 ytot(i) = hyp(i) * Math.Sin(angle(i))
 xtot(i) = hyp(i) * Math.Cos(angle(i))
 For j As Integer = 1 To i
 xtot(i) = xtot(i) + xlength(j - 1)
 Next
 ElseIf angle(i) > Math.PI / 2 Then
 ytot(i) = hyp(i) * Math.Sin(Math.PI - angle(i))
 xtot(i) = hyp(i) * (Math.Sin(angle(i) - angle(0)) / Math.Sin(angle(0)) -
 Math.Cos(Math.PI - angle(i)))
 Else
 ytot(i) = hyp(i)
 xtot(i) = x(i)
 End If

 Next

 For k As Integer = 0 To n
 xo = xtot(k) + xo
 yo = ytot(k) + yo
 Next

 xo = Math.Round(xo / (n + 1))
 yo = Math.Round(yo / (n + 1))

 Dim xspot As Integer = xo + x(0)
 Dim yspot As Integer = yo + y(0)

 Dim xlong As Double = xspot * conv + x0_long
 Dim ylat As Double = y0_lat - yspot * yconv

 Dim goldPen As New Pen(Color.Gold, 5) 'Draw a gold circle around GPS Beacon
Locaition
 Panel1.CreateGraphics.DrawEllipse(goldPen, xspot - 10, yspot - 10, 20, 20)
 LocationLabel.Text = ylat & " , " & xlong

 End Function
#End Region

#Region "Load Location"
 'Load Location File
 Private Sub LoadLocationButton_Click(sender As System.Object, e As System.EventArgs)
Handles LoadLocationButton.Click

49 | P a g e

 LocationFileDialog.ShowDialog()
 End Sub
 'Load Locatin OK
 Private Sub LocationFileDialog_FileOk(sender As System.Object, e As
System.ComponentModel.CancelEventArgs) Handles LocationFileDialog.FileOk
 Dim locationfile As String = LocationFileDialog.FileName
 LocationFileDialog.Dispose()
 If My.Computer.FileSystem.FileExists(locationfile) Then
 Dim pos() As String = IO.File.ReadAllLines(locationfile)
 'Dim row As Integer = 0
 Dim go As Boolean = True
 Dim column As Integer = 0
 Dim ang As String = ""
 Dim longi As String = ""
 Dim lat As String = ""

 Dim poss() As String

 For row As Integer = 0 To pos.Length - 1
 poss = Split(pos(row), ",")

 DataGridView1.Rows.Add(1)
 lat = poss(column) / 1000000
 longi = poss(column + 1) / 1000000

 DataGridView1.Rows(row).Cells("Location").Value = row
 DataGridView1.Rows(row).Cells("Latitude").Value = lat
 DataGridView1.Rows(row).Cells("Longitude").Value = longi

 Next

 Else
 MsgBox("Error! File name '" & locationfile & "' does not exist!", _
 MsgBoxStyle.Critical, "ERROR!")
 End If
 End Sub

 'Load Angle
 'Load the angles from the MAX.txt file
 Private Sub Button2_Click(sender As System.Object, e As System.EventArgs) Handles
Button2.Click
 AngleFileDialog1.ShowDialog()
 End Sub
 Private Sub AngleFileDialog1_FileOk(sender As System.Object, e As
System.ComponentModel.CancelEventArgs) Handles AngleFileDialog1.FileOk
 Dim locationfile As String = AngleFileDialog1.FileName
 AngleFileDialog1.Dispose()
 If My.Computer.FileSystem.FileExists(locationfile) Then
 Dim pos() As String = IO.File.ReadAllLines(locationfile)
 'Dim row As Integer = 0
 Dim go As Boolean = True
 Dim column As Integer = 0
 Dim ang As String = ""

 Dim poss() As String

50 | P a g e

 For row As Integer = 0 To pos.Length - 1
 poss = Split(pos(row), ",")

 DataGridView1.Rows(row).Cells("Angle").Value = 180 - pos(row)

 Next

 Else
 MsgBox("Error! File name '" & locationfile & "' does not exist!", _
 MsgBoxStyle.Critical, "ERROR!")
 End If
 End Sub

#End Region

#Region "Decoding the Signal"

 'Load Message File
' Load the Demodulated signal from DEMOD.txt
 Private Sub LoadMessageButton_Click(sender As System.Object, e As System.EventArgs)
Handles LoadMessageButton.Click
 MessageFileDialog.ShowDialog()
 End Sub
 'Load Message OK
 Private Sub MessageFileDialog_FileOk(sender As System.Object, e As
System.ComponentModel.CancelEventArgs) Handles MessageFileDialog.FileOk
 Dim messagefile As String = MessageFileDialog.FileName
 If My.Computer.FileSystem.FileExists(messagefile) Then
 Dim x() As String = IO.File.ReadAllLines(messagefile)
 Dim intArray = Array.ConvertAll(x, Function(str) Int32.Parse(str))
 Dim length As Integer = intArray.Length

 Chart1.Series(0).Points.Clear()

 Decoded(intArray, TextBox1.Text, length)

 Else
 MsgBox("Error! File name '" & messagefile & "' does not exist!", _
 MsgBoxStyle.Critical, "ERROR!")
 End If
 End Sub

'Demod Function
'This Function is the same as that of the Matlab code, however, it has been converted to
VB.Net
 Function Decoded(ByVal x() As Integer, ByVal approximate_datapoints As Integer, ByVal
n As Integer) As Double
 '""
 ' This function reads the string returned by the instrument
 '""
 Chart1.BackSecondaryColor = Color.Black

51 | P a g e

 Chart1.ChartAreas(0).AxisX.MajorGrid.LineDashStyle =
DataVisualization.Charting.ChartDashStyle.NotSet
 Chart1.ChartAreas(0).AxisY.MajorGrid.LineDashStyle =
DataVisualization.Charting.ChartDashStyle.NotSet
 Chart1.Series(0).ChartType = DataVisualization.Charting.SeriesChartType.Line
 Chart1.Series(0).Name = "Signal Received"
 Chart1.Series(0).Color = Color.Green
 For j As Integer = 1 To n
 Chart1.Series(0).Points.AddXY(j, x(j - 1))
 Next

 Dim z(8) As Integer
 Dim decodedvec(8) As Integer
 Dim encoded(n - 1) As Integer
 Dim tenperror As Integer

 For p As Integer = 0 To n - 1
 If x(p) < TextBox3.Text Then
 encoded(p) = 0
 Else
 encoded(p) = 1
 End If
 Next

 Label5.Text = "Step 1 Complete..."
 tenperror = Math.Round(0.1 * approximate_datapoints)

 Dim check1 As Integer = 1
 Dim count1 As Integer = 0
 Dim check2 As Integer = 1
 Dim count2 As Integer = 0
 Dim check3 As Integer = 1
 Dim count3 As Integer = 0
 Dim check4 As Integer = 0
 Dim count4 As Integer = 0
 'MsgBox("HERE")
 If encoded(0) = 1 Then
 While check1 = 1
 count1 += 1
 check1 = encoded(count1)
 End While

 Dim encodedtemp(n - count1) As Integer
 For i As Integer = 0 To (n - count1 - 1)
 encodedtemp(i) = encoded(count1 + i)
 Next

 encoded = encodedtemp
 Dim encodedtemp2(encoded.Length - 10 * approximate_datapoints) As Integer
 For i As Integer = 0 To (encoded.Length - 10 * approximate_datapoints - 1)
 encodedtemp2(i) = encoded(10 * approximate_datapoints + i)
 Next
 encoded = encodedtemp2

 While check2 = 1
 count2 += 1

52 | P a g e

 check2 = encoded(count2)
 End While

 Dim encodedtemp3(encoded.Length - count2) As Integer
 For i As Integer = 0 To (encoded.Length - count2 - 1)
 encodedtemp3(i) = encoded(count2 + i)
 Next

 encoded = encodedtemp3
 Label5.Text = "Step 2 Complete..."

 Else
 Dim encodedtemp4(encoded.Length - 10 * approximate_datapoints) As Integer
 For i As Integer = 0 To (encoded.Length - 10 * approximate_datapoints - 1)
 encodedtemp4(i) = encoded(10 * approximate_datapoints + i)
 Next
 encoded = encodedtemp4

 While check3 = 1
 count3 += 1
 check3 = encoded(count3)
 End While

 Dim encodedtemp5(encoded.Length - count3) As Integer
 For i As Integer = 0 To (encoded.Length - count3 - 1)
 encodedtemp5(i) = encoded(count3 + i)
 Next
 encoded = encodedtemp5
 Label5.Text = "Step 2 Complete..."

 End If

 While check4 = 0
 count4 += 1
 check4 = encoded(count4)
 End While
 Label5.Text = "Step 3 Complete..."
 Dim datapoints As Integer
 For j As Integer = 1 To 8
 If count4 < (approximate_datapoints + tenperror) * j Then
 If count4 > (approximate_datapoints - tenperror) * j Then
 datapoints = Math.Round(count4 / j, 0)
 End If
 End If
 Next
 Label5.Text = "Step 4 Complete..."
 For j As Integer = 0 To 8
 z(j) = 0
 Next

 For j As Integer = 1 To datapoints
 z(0) = encoded(j) + z(0)
 Next

53 | P a g e

 z(0) = z(0) / datapoints
 Label5.Text = "Step 5 Complete..."
 For k As Integer = 1 To 8
 For i As Integer = (k) * datapoints To (k + 1) * datapoints
 z(k) = z(k) + encoded(i)
 Next
 z(k) = Math.Round(z(k) / datapoints, 0)
 Next
'Display the Demodulated Signal in binary
 Label6.Text = z(0) & z(1) & z(2) & z(3) & z(4) & z(5) & z(6) & z(7) & z(8)
 End Function
#End Region

End Class

Appendix D: Power Budget

Part Power Required

RF Amplifiers 550mW @ 5V

VCO 200mW @ 5V

Receiver Circuit 375mW @ 5V

Arduino Due (GPS included) 450mW @9V

Motor Banks 7.92W @6.6V

Servo 1.75W@6.6V

12. References

DataSheets:

MCP6002: http://ww1.microchip.com/downloads/en/devicedoc/21733f.pdf

AD8307: http://www.analog.com/static/imported-files/data_sheets/AD8307.pdf.

Chassis: http://www.pololu.com/product/1561/

RF Amplifier: http://www.minicircuits.com/pdfs/ZFL-2500+.pdf

Mixer: http://www.minicircuits.com/pdfs/ZAM-42.pdf

Band Pass filter: http://www.minicircuits.com/pdfs/BBP-10.7+.pdf

Tip 42 BJT: http://www.farnell.com/datasheets/1700358.pdf

http://ww1.microchip.com/downloads/en/devicedoc/21733f.pdf
http://www.analog.com/static/imported-files/data_sheets/AD8307.pdf
http://www.pololu.com/product/1561/
http://www.minicircuits.com/pdfs/ZFL-2500+.pdf
http://www.minicircuits.com/pdfs/ZAM-42.pdf
http://www.minicircuits.com/pdfs/BBP-10.7+.pdf
http://www.farnell.com/datasheets/1700358.pdf

54 | P a g e

Code examples:
http://www.arduino.cc/

http://www.arduino.cc/

