DMFARE

EE 382 Final Report
Team D - SAFIRE
Superior Autonomous FireFighting Robot
Engineers

Nathan Miller, James Farrell,
Allen Woo, Jack Ramzel

Figure 1 - Robot 0x46 0x49 0x52 0x45 0x21 a.k.a FIRE!

Table of Contents

Section

List of Figures
Abstract
Introduction
Design Aspects
Chassis
Flame Sensors
Range Sensors
Line Sensors
Microcontroller
Flame Extinguisher
Power
Motors
H-Bridge
Encoders
Fuses
Programming
Master Arduino Due
Slave Arduino Due
Conclusion
Future Work
Budget
Estimated Power Budget
References
Appendix A - Master Arduino Due Code
Appendix B - Slave Arduino Due Code
Appendix C - MATLAB Simulation Code

Page

NN w

10

14
15
16
17
17
19
20
22
22
27
29
31
32
34
35
36
56
58

Figure

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21

List of Figures

Robot 0x46 0x49 0x52 0x45 0x21 a.k.a FIRE!
Block Diagram

Locomotion System

UV-Tron Spectrum

Wii IR Camera Module

Wii Clock and Wiring Diagram
SRF04 Ultrasonic Sensor
Ultrasonic Sensor Test Results
Custom Line Sensor

Arduino Due Microcontroller
Logic Level Shifter
MOSFET/Relay Circuit

A123 LiFe Battery

Maxon DC Motor

L298N H-Bridge

H-Bridge Truth Table

Ripple Counter

Matlab Simulation

Supplied items

Purchased Items

Estimated Power Budget

Page

©O© 00N -

10

12
14
15
15
16
17
18
18
20
25
32
33
34

Abstract

For the Introduction to Design (EE 382) class, groups of students were given two
options. One option was to build a beacon finding robot and the other was to build a fire
fighting robot. Team SAFIRE chose to design a robot capable of completing the firefighting
challenge for the RoboRAVE competition. In order to be considered a success, the robot
must extinguish four flames within a 12'x8’ field in under three minutes. Three of the
candles are blocked by walls that needed to be navigated around. The field is marked by a
white border tape with a black stripe.

The robot was constructed on a metal chassis connected to high-torque motors.
Sensors included ultrasonic sensors, line sensors, a Wii remote sensor, and a UV-Tron
ultraviolet sensor. A panning servo system moved the Wii sensor and UV-Tron sensor in
addition to the fan extinguishing system. The Arduino Due was used as the primary
interface between all components and the motors. Two different search programs were
written in C using the Arduino IDE environment. The robot was not completed for the
scheduled demonstration on April 29th. However, the robot was ready to compete for the
international RoboRAVE competition on May 3rd. Team SAFIRE placed 4th in the

international competition of 25 teams.

Introduction

Team SAFIRE (Superior Autonomous Firefighting Robot Engineers) formed out of
the requirements for EE 382 (Intro to Design). The team selected the challenge of
designing a robot (see Figure 1 above) capable of completing the RoboRAVE firefighting
challenge by autonomously navigating a 12'x8’ field and extinguishing four flames within
three minutes. The candle flame was held at a height of 10” and the robot was required to
be within 8” of the candle base to extinguish them. A ring of white 1” wide tape was used to
indicate the 8” distance. The field had three walls 18” wide and 16” tall. The field had a 3”
border consisting of a white-black-white tape, each color an inch wide. Hitting a wall
carried no penalty, however, hitting or knocking over a candle did. This made it important to
prioritize an accurate obstacle avoidance system.

In order to construct a fully autonomous robot, a variety of sensors for range
detection, line detection, and flame detection were utilized (see Figure 2 below). The
range detectors consisted of an array of seven SRF04 ultrasonics, arranged in the front of
the robot giving a 180° field of view. The white/black line detector was designed
specifically for this project. The sensor consists of an LED that reflects off a surface and a
photoresistor that reads the reflected light level. In order to increase our rate of success,
two flame detection methods were implemented at once. The first was a Hamamatsu
UV-tron, which detected ultraviolet radiation. The second was an IR camera used in a

Nintendo brand Wii-remote to track IR emitters for the gaming console.

Microcontroller \
Motors and
Chassis \ { \
p— [~ Motor Control
A
Flame :
Extinguisher \
et || Navigation
Programming
Distance
Sensor /EI;/
Seneo,
=
N4

Flame

Sensor

Figure 2 - Block Diagram

All of the components and sensors are housed on board a round 10” diameter
chassis. The system is powered with 13.2v provided from two 6.6v batteries in order to
provide ample power to all components. The flame sensors and fire extinguishing system
are housed atop a servo so that they can be panned over 180° to detect the flames.

The robot would perform what was named a center line search algorithm to locate
the flame. This method required position tracking on the field to allow the robot to return to
the center after extinguishing a flame or inspecting a barrier the programming deemed
suspicious. Additionally, a random searching algorithm was developed due to time
constraints. The programming was all done in the Arduino environment which is a C based
language. The programming contained a mix of developed code and preconstructed
libraries for various sensors and functions.

The components used to form a functional and effective firefighting robot will be

described in the sections below.

Design Aspects

Chassis

The SAFIRE chassis (see Figure 3 below) was designed around a 10” circular disk
with an aluminum base, two Maxon DC motors with 14:1 gearheads and optical encoders.
Two steel ball casters were used at the front and back of the base for stability. The center
rise to house the ultrasonic and fire detection circuits were supported by two upright
1"x1"x9” wood beams. Atop the wood is a 5v digital servo which pans the UV-tron,

Wii-Mote Camera, and the extinguishing fan mounted to a metal platform.

Figure 3 - Locomotion System

Flame Sensors

In order to accurately locate the flames, two fire detection components were
implemented; the UV-Tron and the Arduino “Hack” for the Wii-Remote IR camera. The
UV-tron is a highly accurate circuit designed to detect flame up to about 25" away (see
Figure 4 below). The circuit is powered by 5V and outputs a 10ms signal when 3 UV
waves are detected. The main issue that had to be addressed was the field of view for the

sensor. While its vision is dependant on orientation, it is possible to obtain 180° field of

view. The sensor needed to be shielded so the field of vision would be narrowed to roughly

30° in front of the robot. In the end, a simple foam sleeve was used with a forward facing

opening.
100 T
z U¥ton's ol - '
o SPECTRAL ——)
= | RESPONSE | T -
E - - Ly 1l 3 = -
o /o] X:
< pfemes | PN
- x
Bz w0 Sl S S TR
E i l 1 - \/
G2 4 BAS # TUNGSTEM |
Z = 17 FLAME —2 T UGHT
il 'ﬂ' ;r’.-
£ JJ Call
g 0 ' - |
i 100 200 300 400 500 600 T00 200 200

WAVELENGTH {nm)

ULTRAWIDLET | VISIBLE [INFRARED

Figure 4 - UV-tron Spectrum

The Wii-Mote IR sensor (see Figure 5 and 6 below) was a modification to the
Nintendo Wii-Mote that allowed the robot to use its ability to track up to four of the brightest
IR sources in an X and Y coordinate plane. Using a simple timing circuit, the robot was
able to receive accurate X and Y coordinates from the camera up to 8. Once the Wii-Mote
camera was implemented, the best mounting positions were tested. It was discovered that
the best position was placing the camera slightly angled downward towards the flame. This
made it much more accurate and consistent. As a result we chose to mount the camera
above our extinguishing fan to provide the extra height.

In order to use the Wii remote, a clock circuit had to be constructed. The circuit was
designed to create a square wave at 25 MHz. The circuit diagram and wiring diagram can

be seen if Figure 6 below.

Figure 5 - Wii IR Camera Module

B0 Bus Voltage C orverter SHIELD for Ardudne by kako

VL Vel
(AT
EC B Volupe Comrmtar oo
LTCANIL
A e g
E LE LE
o | M B ——————— T gt
. -I'T ——
ZE e . ELIT
PRt —————— s Sl aet
me = ROV o
e
e Bt Do n -
T
T W Famats o
o ot { Ve - Ver {sh, N0
| P - CED
{ i * - Gl
— N d == reperiy
§ - P G B
- i, B
I 5 - CLE (iR
:.-‘q DJ 1 - T
; K1k
JjxmaL 1] Xk
ol
B gl a2 |
- = b e

AEDUD A
ATHEGA i Cnrdulio]
FCd - 135 3

ATHECA1EH Carahiing]
Fi§ - 13T 50U
ARCREMT A%

Cs 10

scLout 209

SCLIN 30

GND 4 s

TOP VIEW

L= 1T
a4
CAM S

M

«18 Ve
rea 17 SDAOUT

cuns 7] 6 SDAIN

= 115 READY

MS8 PACKAGE
8-LEAD PLASTIC MSOP

Tomax = 125°C, 0ya = 200°C/W

Figure 6 - Wii Clock and Wiring Diagram

A third flame sensor was the dual IR LED sensor. It was the most compact of the

flame sensors. It was designed to simply detect and compare infrared light emitted by the

10

candles. The circuit was composed of two IR LEDs, two trans-impedance amplifiers and
two voltage dividers. The device could sense small IR emissions, like the candles, from
approximately three feet. It could differentiate between which of the two sensors was closer
to the emission and adjust until the the emission was directly in front of the sensors. Due to

time constraints, the dual IR LED sensor was not implemented in the final design.

Range Sensors

In the playing field, there were three walls whose dimensions were 18” wide by 16”
tall. These walls would obstruct the path and view of the robot. The robot must be able to
detect these walls and navigate around them. The solution implemented was seven
SRF04 ultrasonic sensors (see Figure 7 below). The detectors emit a high frequency pulse
and measure the time it takes for the pulse to return to the sensor. The Arduino then takes

that time and calculates what distance it corresponds to in centimeters.

Figure 7 - SRF04 Ultrasonic Sensor

Initially, the plan was to implement three ultrasonic range sensors. However, after

testing, it was determined that the initial plan would not be sufficient due to frequent

11

problems caused by blind spots. To remedy this, the group purchased seven new SRF04
sensors and mounted them in a semicircle around the front half of the center structure on
the robot. This allowed the robot to have a sensor every 30°, which eliminated the blind
spots. Both the SRF04 sensors, that the group started with, and the SR04 sensors
purchased later, had 30° fields of view. This meant that an ultrasonic emission from the
sensor could bounce off something up to 15° off axis and accurately return the timing
information necessary for the distance calculation. This also meant that with all seven
ultrasonics running, the robot's field of view was 180° on the front side. When it was
decided that the robot should have seven ultrasonic sensors, the group also considered the
possibility that they might interfere with each other, due to their proximity. However, after
testing, it was discovered that there was no interference between sensors by staggering
which ultrasonic was in operation (so that no two close ultrasonic sensors were used in
succession). As with all 5 volt inputs to the Arduino Due, the SRF04 outputs were sent
through a SN74LVC245AN (level shifter chip) to drop the voltage from 5V to 3.3V. The

results from testing the ultrasonic sensors can be seen in Figure 8 below.

SR04 Brand Near Range (42cm) | Far Range (120cm) | Placement
Unknown 42cm x1cm 115cm +£3cm not used

Vivotech 42cm +1cm 110cm £1cm forward most sensor
SainSmart 43cm £1cm 120cm £1cm 90° sensors

Figure 8 - Ultrasonic Sensor Test Results

12

Line Sensors

In order to have a frame of reference for the the operating field, the robot needed to
know when it came across a boundary. The boundaries for the edge of the field were
marked by a black line in between two white lines. There are also white rings around each
of the candles to mark the maximum distance the robot can be at to extinguish a flame.

To detect the lines, three reflectivity sensors were custom made. The sensors
consisted of an LED, an instrumentation amplifier circuit, and a photoresistor (see Figure 9
below). The LED shines on towards the ground and the photoresistor measures the
amount of light that gets reflected back and the amplifier translated it to a usable value. The
higher the voltage from the photoresistor, the brighter the surface. However, this signal
tended to be weak coming directly from the photoresistor which is why the instrumentation

amplifier was implemented.

R3

| %m

RG

R2
R4 RE&

LED1
RS a7

o Lo
?

Photoresistor

Figure 9 - Custom Line Sensor

13

The reason an instrumentation amplifier was chosen instead of a regular op-amp
was because of the high CMRR. CMRR, or Common Mode Rejection Ratio, is the
rejection of unwanted signals. Typically, the higher the CMRR the better. The configuration
of an instrumentation amplifier enables a high CMRR. The photoresistor measures the
reflected light and sends the signal through the instrumentation amplifier. The signal from
the instrumentation amplifier is then read by the analog inputs on the Arduino. The Arduino
measures the highest and lowest values for the first five seconds and uses those values as
a reference for the current run. Highest values correspond to the white lines and the lowest
values correspond to the black line. The values in between correspond to the carpet and
will be ignored. A technique that was used to help the calibration was to calibrate the
sensor with a gray sheet of paper. This allowed the robot to look for a value that was
slightly lower than what the white would represent. The effect was that when the sensor saw
a white line, the reflection was more than enough to trip the sensor without fault.

During testing, errors occurred such as a much lower value than expected. The
voltage was divided instead of multiplied when run through the instrumentation amplifier.
This was determined to be because the photoresistor was connected to “Input 1” on the
diagram in Figure 5. Switching the photoresistor to “Input 2” fixed this problem. During
competition, changes in the thresholds and initial calibration had to be modified in order to

ensure a sufficient white line or black line signal.

14

Microcontroller

When the project was started several ideas were tossed around for the
microcontroller. Several options included: the HC12 board from previous classes, the
Raspberry Pi, and Arduino. The decision was made based on the ability to use the
Wii-Mote camera with the Arduino. As fas which Arduino to use, one board in particular
stood out. The Arduino Due has 54 digital 10 pins and 12 Analog 10 pins which provide
ample pins for sensors and controls (see Figure 10 below). The clock speed of the
onboard processor was also much higher than any comparable Arduino, at 84 MHz. In the

end, the Arduino Due was chosen.

Figure 10 - Arduino Due Microcontroller

The only downside of this decision was that the Due, unlike most Arduinos, runs its
pins at 3.3V instead of 5V. This presented a problem in that most sensors provided a 5V
response (as with the ultrasonic sensors and UV-tron). To remedy this problem, several

SN74LVC245AN (octal bus transceiver) logic level shifting chips were used. This allowed

15

dropping the 5v signal to 3.3v without losing the incoming data. The circuit configuration

used can be seen in Figure 11 below.

u1

3.3v

Sv signal — —e
fram Sensor] = 3.3vsignal

Echo P [& to Arduino

[S O) S
—Y

Gnd] —
SNT4LVC245AN

Figure 11 - Logic Level Shifter

Flame Extinguisher

The flame extinguishing subsystem was composed of a small but high powered fan
driven at maximum available voltage. After testing several small computer fans and motors,
a small computer fan was chosen that accepts 12v and uses up to 0.60A. Due to this high
power draw, the Arduino Due was unable to provide the power directly. This meant that
some sort of switching circuit need to be developed. Both MOSFET switches and relays
were considered. However, in the end it was decided that a MOSFET would be needed to
toggle the relay in order to reliably turn on the fan due to the limited voltage level and current

output of the Arduino Due pins (see figure 12 below).

K1
EDR2014A05 13.2v

5v signal

from Arduino JUA CPJ_:) _
stepped u

fmr[:l P To Fan

TA4LVC245 IRE541 =

Figure 12 - MOSFET/Relay Circuit

16

To provide enough voltage to toggle the MOSFET, one of the SN74LVC245AN was
used to step up the 3.3V from the Due to 5V. The group originally tested this using a relay
in place of the MOSFET but the Due alone was not enough to toggle the relay. However,
the voltage and current supplied by the chip was not enough to fully turn on the MOSFET,

so the MOSFET was used to turn on the relay.

Power

In order to safely power the Arduino, the group needed to supply between 7v and
20v. To do this, two 6.6v A123 LiFe batteries (see Figure 13 below) were placed in series
to provide 13.2v and 2300mAh. The only components that take the full 13.2v input were the
Arduino Due, the motors, and the fan. The batteries provide roughly 90 minutes of
continuous use. These batteries were the first choice because of their total output and
availability. In order to power the 3.3V and 5V systems, the voltage regulators built into the
Arduino Due were utilized. However, in testing, capacitors were added to the outputs in
order to minimize fluctuations from the voltage regulators. Additionally, one Due was used

to provide 5V and the other 3.3V in order to reduce strain on each Due.

Figure 13 - A123 LiFe Battery

17

Motors

Two Maxon DC Motors (see Figure 14 below) were obtained from the robot jail.
They were already equipped with 14:1 ratio gearheads and HP optical quadrature
encoders. The motors are capable of operating at 18v which is significantly above the
13.2v battery supply. The motors are able to supply much more torque than what was
required to move the robot granting the motors the ability to operate at varying PWM
inputs. The motors are relatively small for their output and easily fit under the platform
without causing issues. Considering the size of the motors the group had the option to use
large wheels but opted to stay with the 2” diameter wheels that were also already with the

motors.

© Q maxon DC motor

2332.968-56.236-200
swiss made
T 02

Figure 14 - Maxon DC Motor

H-Bridge
The H-Bridge used to control and power the motors was of standard configuration

(see Figure 15). Its most impressive aspect is that it can run two channels at up to 46V, 2A.

18

However, this was well past what was being using at 13.2V making it more than sufficient.
The board itself had a positive and negative line out to power each motor. Each motor also
had an enable pin and a second set of pins labeled (+) input and (-) input. Its control
protocol was implemented by the enable and input pins. The enable pin, when high, would
allow control actions to take place. Then pulling the input pins high or low would allow

control over the motors on a lower level. this can easily be seen in Figure 16 below.

Figure 15 - L298N H-Bridge

E|+] - Motor Status

L] X]|X Power Off
H{L|L Stop(Brake)
H{H]|L Rotate CW(Fast)
HIL|H Rotate CCW(Fast)
HI{H|H Stop(Break)
P]IH|L Rotate CW(Slow)
P|IL[H Rotate CCW(Slow)

E=Enable H=High L=Low P=Pulse X=Don't Care

Figure 16 - H-Bridge Truth Table

19

Even more precise actions can be implemented through the H-bridge via PWM.
Things such as cruise control, acceleration, and speed changes can be done through
PWM utilization alongside encoder implementation. The group in particular, needed and
implemented cruise control to make the motors match pace with each other. This helped
the robot perform precision steering and would have been particularly useful if it had been

possible to implement the mapping algorithm.

Encoders

The encoders, like the gearheads, were already mounted when they were obtained
with the motors. They pulse at 200 counts per revolution (which account for ten high state
changes) HP quadrature encoders and with the 14:1 ratio of the gearheads, every rotation
had ~28,000 state changes per motor. Each encoder has two internal sensors that are
mounted side by side. This is done so that the signals that are output in the two data lines
(one from each sensor) are offset by 45 degrees. With the offset monitored carefully it was
possible to obtain directional information that can help guide the robot.

The data from each of the encoders needs to be divided so the microcontroller can
read and use it without much effort. For this task it was decided that a divider of 16 would
slow the information down enough to be read by the microcontroller. In order to obtain a
division of 16 the group decided that either a ripple counter circuit or an FPGA would be
able to handle the task. The flip-flop based ripple counter would use four IC’s (74HC4040),

one for each line of incoming data (see Figure 17 below). However, a problem arose in its

20

operation. Implementing the ripple counter unfortunately came at the cost of the directional

information as the phase information was not retained when changing directions. The

solution to this problem was to replace the ripple counter with an FPGA. The group was

able to obtain the DEO-nano, a Cyclone 4 based FPGA. By coding in four 4-bit registers

that increment every high edge state change and outputting the most significant bit of each

register, the speed of the encoder outputs are slowed by 16. By having particular registers

increment based on a check of highs and lows in tandem directional information can be

retained and utilized. However, due to time constraints, the DEO-nano was not able to be

implemented in time for the competition.

uz

S ‘IIII

T4HC404
u3

Sv

—

Signal to

Signal from
Encoders

Arduing T

ST lIIII

T4HC404
u4

T lIIII

IGnd

T4HC404
us

=

Reset
Line

T4HC4040

passed through
74LVC245

Figure 17 - Ripple Counter

Fuses

In order to protect the teams Arduino and other circuitry two fuses were added in

strategic locations to attempt to protect the most important components. The Due is

21

capable of pulling up to 800mA safely so a 750mA fuse was placed in line before the
microcontroller to prevent its potential damage. The group also decided that the batteries
represented the next most important component in need of protection. After estimating
what was believed to be a modest current consumption, a 3A fuse was decided upon and
placed between the batteries and everything else. While there were not any blown fuses
due wiring issues, one of each fuse blew up while unplugging the robot or accidentally
touching hot wires. Thus the fuses served their purpose by protecting the robot from human

error.

22

Programming

The programming for the Firefighting robot was divided into two separate
programs, one for a master microcontroller and another for a slave microcontroller. Both
microcontrollers were the Arduino Due, utilizing the Arduino IDE programming environment
(utilizing C and C++). The master microcontroller was programmed to receive multiple
inputs from sensor data and react based upon that information. The slave microcontroller’s
purpose was to read data from the encoders and send the information upon request to the
master microcontroller. The microcontroller’'s and the programs associated with them will
be described in further detail below.

The organization of the program was designed to maximize readability by
separating the repeating sections of code into functions. The functions each perform a
specific task. Changing variables, needed by multiple functions, were declared as global
variables to ensure proper scope across all functions. Temporary variables were declared
within the needed scope. As needed, variables were initialized to ensure desired values
would be set to known values. Code was commented as needed to allow for easier

troubleshooting.

Master Arduino Due

The Master Arduino Due was responsible for analyzing the sensor data and
responding accordingly. First, the program initialized required variables and included
desired libraries (see Appendix A below). Next, in the setup loop, the program begins

communication between the various sensors and the 12C. The I12C is connected to the

23

slave Arduino Due and to the Wii camera. The program waits in the setup loop until the
start button is pressed and then finishes the setup commands.

The main loop simply calls the desired programs in a systematic order. Each
function is described in further detail in Appendix A below. The sensor functions were
designed to check the values, request data from the desired sensors and save the data to
the global variables. The random search and robot search algorithms called desired
response functions based upon the data information. The response functions controlled
the motors, servo, and fan functions.

The robot search algorithm was designed to perform a center search procedure.
The robot would start in the corner and proceed to the center line. The robot would then
drive up and down the center line. A fire override would take place whenever the UV
sensor or the Wii camera detected a fire. Additionally, suspicious unexplored walls would
be examined to check for hidden candles. In order to keep track of position, basic
trigonometry was performed to keep track of x and y coordinates as well as angular
direction. This information was derived from the encoder distance data.

The random search algorithm was developed as integrating the hardware with the
programming became very challenging and time consuming. The random search
algorithm would simply avoid obstacles, stay within the field boundary, and look for fire.
Once fire was detected, the robot would home in on the fire and put it out. The
disadvantage of this simple program was that there was no guarantee all areas of the field

could or would be searched thoroughly.

24

Both search algorithms set flags and variables to determine desired speeds and
direction of the robot. The speed of the robot was controlled using a PID (proportional
integrative derivative) method of controlling the speed of the motors. Using trial and error,
values for the PID were set to allow a nearly constant speed from both wheels. The result
was that the robot had little left or right drift when travelling straight.

The Wii camera and slave Arduino Due were connected using the 12C
communication protocol. When information from one of the slave devices was needed, the
program utilized the Arduino wire library to request and receive the information. The
information was analyzed and saved to the appropriate variables.

Prior to writing the center search algorithm, the concept of the searching method
was tested theoretically using Matlab. See Appendix C below for the Matlab program

code, Figure 18 below, or go to http://goo.gl/YKn7G9. The program creates a “playing

field” using preset barriers. The robot then searches the field, navigating barriers and
staying within the line boundaries. Once the opposite side of the field is reached, the robot
reverses direction and travels back down the middle of the field, again avoiding barriers.
The test program performed as expected and demonstrated the possibility of utilizing a

center line search algorithm.

http://goo.gl/YKn7G9

25

Figure 18 - Matlab Simulation of Center Line Search Program

The Matlab simulation provided the building blocks that were implemented within
the robot search algorithm. The additional components that were added provided
overrides for fire detection and suspicious barrier exploration. Whenever a fire was seen,
the robot was programmed to go directly towards the fire and extinguish the fire once within
the 8 inch circle. Having kept track of location information, the robot would then return to
the center line search algorithm. The suspicious barrier mode had lower precedence than
the fire detection but would override the center line algorithm. The concept was to circle

any barriers that were within the boundaries of the field, as determined by the ultrasonic

26

sensors, and extinguish any observed flames.

Due to hardware issues and time constraints, the center search algorithm was
abandoned before completion. The finished code is included in Appendix A. Instead, a
random search algorithm was incorporated. The random search algorithm was designed
to keep the robot within the boundaries at all times and avoid obstacles. Whenever a
boundary or barrier was detected, the robot turned a predetermined amount to avoid the
obstacle or to stay within the boundary. When fire was detected, the same algorithm as in
the line search was used. The fire detection took precedence over the random search
algorithm. The line sensors again detected when the robot was within range of the candle

and the fire extinguishing system was activated.

The fire detection system was comprised of the Wii camera and the UV-Tron. The
Wii camera data was obtained using the 12C. Only the x coordinate of the brightest flame
was used as less bright flames and y coordinate information did not matter. When the
robot was relatively centered on the candle, the robot would continue forwards. If the
candle moved off center, the robot would turn accordingly to correct. Additionally, in case
the robot over corrected or was moving too quickly, the last location of the candle within a
short period of time was remembered and the robot turned in the suspected direction of
the last candle. The UV-Tron was connected to an interrupt. The interrupt would run
whenever a pulse was detected from the UV-Tron. The pulse would indicate a flame
detection. However, this process was slow and was ultimately used as a backup sensor to

help ensure positive fire detection.

27

The fire extinguishing system panned the servo mount and turned on the fan motor
for a predetermined amount of time. After attempting to blow out the candle, the program
would first return to the fire detection portion of the algorithm. If the fire was still detected,
the extinguishing system would run again. The entire process would repeat until the robot

was stopped by resetting the microcontroller.

Slave Arduino Due

The Slave Arduino Due was designed with a single purpose of detecting pulses
from the encoders, saving the information, and then outputting the information to the Master
Arduino Due via 12C (see Appendix B below). Due to the computational power required by
a high frequency of encoder pulses, the Arduino Due was dedicated to the encoders. The
encoders each outputted two signals out of phase. Whenever a rising or falling edge was
detected by the Arduino Due, the encoder count was incremented. The count was stored
in the memory of the Due until requested by the Master. The Master Arduino Due
interpreted the counts by scaling them based upon the number of counts per revolution
generated by the encoders. As the number of counts was still to high for the slave Due, an
array of ripple counters reduced the number of pulses by a factor of 16, which was

accounted for in the Master Due interpretation of the data.

In testing the search algorithm, there were several bugs that will need to be worked
out. First, the line sensors require calibration. At the RoboRave competition, the line
sensors had difficulty in untested environments. Further calibration and testing would be

necessary to ensure solid operation from the sensors. Several bugs in the code resulted in

28

periodic spinning motion of the robot. With more troubleshooting and testing, these errors

can be corrected.

29

Conclusion

Even though the robot was never fully functional, it still managed to place 4th in the
International RoboRAVE Firefighting Competition thanks to consistency in blowing out the
first candle. This success is also due to having put in the effort to complete the pre-event
points; the paper, video, and sponsorship letters that were covered in the competition
rules.

In the end, the center line search algorithm, that was believed to be very successful
approach, had to be abandoned. To program such a complex code and with the last
minute hardware failures that were experienced required too much time. Accuracy had to
be sacrificed for a chance at multiple candles.

The Arduino Due was a very reliable and easy to use microcontroller, but it is
recommended to consider a platform that has more refined 12C communication lines. The
Due, as was found out late in the semester, has some fairly prevalent issues with
consistency in these channels.

The Encoders were another challenge themselves with roughly 30,000 counts per
revolution, they sent much more data than the Arduino could reliably handle at higher
speeds. Several methods were tried to remedy this problem, unfortunately some of the
methods were too late in coming to be implemented.

The Ultrasonic range sensors had no real issues individually. When seven were
implemented at once, they started to cause a noticeable delay. Each sensor could take up
to 32ms to complete its function. So if no sensors had a return signal, the robot would

spend approximately 0.2 seconds just checking the range around the robot. During the

30

competition, the group choose to disable a few of the sensors that were not necessary to
function outside the centerline search.

The UV-tron was originally planned to be used as a confirmation for the Wii-Mote.
When the camera failed, the group attempted to use the UV-tron as the primary detection
source. However, it was just too slow to be used effectively.

All in all there was a massive amount about troubleshooting, integration, and
teamwork on this project that will give us a good basis to start our senior design class in

the right foot.

31

Future Work

In the future, several important features and lessons will be implemented to build a
better firefighting robot. First, a simpler design will be implemented. While in theory and
separate testing, the sensors performed exceptionally, when finally integrating them all onto
one device, the challenges proved time consuming. Secondly, a simpler initial search
method will be used. Many hours were used writing code to keep track of positional
information. In the end, this program had to be laid aside due to time. Starting simple and
working up to a more complex algorithm would have saved much effort. Third, using
common components rather than custom or hacked components could save time and
effort. Although the Wii camera was potentially extremely powerful and useful, it required
extra effort in order to implement. Even though the analog component was a requirement,
it made building the line sensors more challenging and potentially less accurate than
conventional products. Finally, the entire project should be started considerably earlier.
The difficulty of the programing dictates a longer period of time needed for the process.
Thus, future projects would dedicate more time to the programing in order to produce

effective code.

32

Budget
Parts that were available to us at no cost.
Part Quantity Price(each) Total Cost
Maxon Motors with gears and 2 $150.00 $300.00
encoders
Chassis 1 $10.00 $10.00
Wheels 2 $2.50 $5.00
UV tron 1 $50.00 $50.00
Dual H Bridge 1 $5.00 $5.00
LM411 3 $0.50 $1.50
SRF04 Sensors 3 $5.00 $15.00
Not Gate 7404 1 $0.50 $0.50
Discrete Components $3.00 $3.00
Batteries 2 $40.00 $80.00
Fan 1 $10.00 $10.00
$475.00

Figure 19: Supplied items

Parts that we ordered using our $325 budget.

33

Parts Ordered Quantity Price Total Cost
(each) (Including Shipping)

Arduino Due 1 $39.95 $39.95
Ball Caster 2 $1.99 $5.77
5v-3.3v Chip 4 $0.50 $2.98
Wii Remote 1 $13.79 $13.79
Super Bright LED 3 $2.95 $5.90
Surface Mount DIP 2 $5.00 $12.00
Green Wires 4 $5.00 $20.00
Servo(Plastic) 1 $8.95 $8.95
Servo(Metal) 1 $13.99 $13.99
Vivotech Ultrasonics 4 $5.65 $22.60
SainSmart Ultrasonics 3 $5.50 $16.50
Perf-Board 3 $0.75 $2.25
Multi OpAmp DIP 3 $2.00 $6.00
Inverter DIP 3 $3.00 $9.00
Bread Board 1 $5.00 $5.00
Siren 1 $8.25 $8.25
Male Male Wire Kit 1 $7.00 $7.00

Total $199.93

Figure 20: Purchased ltems

Overall we have spent $199.93 of our $325.00 budget. The parts we were given or salvaged
from robot jail amounted to $475.00. In total our robot would cost $674.93 to completely

replicate.

Estimated Power Budget

34

ltem Power Each Number Used Power Total

Motors 6W 2 12W
Arduino Due 3.6 W 2 7.2W
Line Sensor 0.3wW 3 1W
Ultrasonic 0.03W 7 0.21W
Wii-mote Flame Sensor 0.15W 1 0.15W
UVtron 0.048 W 1 0.05 W
Fan 1.2W 1 1.2W
Octal Bus Transceiver 0.01W 3 0.03W
Ripple Counter 0.01W 3 0.03W
Misc 0.25
Total 2212 W

Figure 21: Estimated Power Budget

References

"2001 Groups and Final Reports." 2001 Groups and Final Reports. NMT Electrical Engineering Department,
May-June 2001. Web. Feb.-Mar. 2014.

"Fire Fighting Challenge 2014." RoboRAVE International. N.p., n.d. Web. Feb.-Mar. 2014.

"Wii IR Camera - RoboTeen." RoboTeen. N.p., n.d. Web. Feb.-Mar. 2014.
<http://roboteen.org/wordpress/wii-ir-camera/>

"Wii Remote IR Camera Hack with Arduino Interface." Instructables.com. N.p., Jan.-Feb. 2010. Web. Feb.-Mar. 2014.

Spectrex, Inc. "Flame Detector Types." N.p., May 2008. Web. Jan.-Feb. 2014.
<http://spectrex-inc.com/files/sharpeye/presentations/firedetectiontypes_may08.pdf>.

"How to Build a Robot Tutorials - Society of Robots." How to Build a Robot Tutorials - Society of Robots. N.p.,
2005. Web. Jan.-Feb. 2014.

"Arduino - Libraries." Arduino - Libraries. Arduino, n.d. Web. Mar.-Apr. 2014.

Texas Instruments. "A Single-Supply Op-Amp Circuit Collection." N.p., Nov. 2000. Web. Jan.-Feb. 2014.
<http://www.eng.yale.edu/ee-labs/morse/compo/sloa058.pdf>

"Hp HEDS - 5000 Series Datasheet." N.p., n.d. Web. Feb.-Mar. 2014.
<http://www.telusplanet.net/public/mcpheej/HP_ HEDS 5000 Series/HEDS 5000 Optical Encoders.pdf>.

"SRF04 Technical Documentation." SRF04 Technical Documentation. N.p., May 2005. Web. Feb.-Mar. 2014.
<http://www.robot-electronics.co.uk/htm/srf04tech.htm>.

"OCTAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS." N.p., Sept. 2010. Web. Feb.-Mar. 2014.
<http://www.adafruit.com/datasheets/sn741vc245a.pdf>.

"Maxon DC Motor." N.p., Apr. 2000. Web. Feb.-Mar. 2014.
<http://www.ee.nmt.edu/~wedeward/EE382/SP01/2322 18V_motor.pdf>

"Dual H -Bridge DC Motor Driver." N.p., Aug. 1998. Web. Feb.-Mar. 2014.
<http://www.cs.unca.edu/~bruce/Spring07/180/dhb-v2.pdf>.

"DEO-Nano Development and Education Board." Altera News. N.p., Dec. 2005. Web. 05 May 2014.
<http://www.altera.com/education/univ/materials/boards/de0-nano/unv-de0-nano-board.html>.

35

http://www.google.com/url?q=http%3A%2F%2Froboteen.org%2Fwordpress%2Fwii-ir-camera%2F&sa=D&sntz=1&usg=AFQjCNFhqnc3WQuhONLibWwEKyX4Q7QdkA
http://www.google.com/url?q=http%3A%2F%2Fspectrex-inc.com%2Ffiles%2Fsharpeye%2Fpresentations%2Ffiredetectiontypes_may08.pdf&sa=D&sntz=1&usg=AFQjCNFNDS56x2H85l5oDt6-feuLgDCDqw
http://www.google.com/url?q=http%3A%2F%2Fwww.eng.yale.edu%2Fee-labs%2Fmorse%2Fcompo%2Fsloa058.pdf&sa=D&sntz=1&usg=AFQjCNFOM67NWy9ZOUmDpD6HhosfiKZNoA
http://www.google.com/url?q=http%3A%2F%2Fwww.telusplanet.net%2Fpublic%2Fmcpheej%2FHP_HEDS_5000_Series%2FHEDS_5000_Optical_Encoders.pdf&sa=D&sntz=1&usg=AFQjCNFQX1TpxHzlj0Pl5HQUizO1DUfqBQ
http://www.google.com/url?q=http%3A%2F%2Fwww.robot-electronics.co.uk%2Fhtm%2Fsrf04tech.htm&sa=D&sntz=1&usg=AFQjCNHC7DiBV4UXjFjBSxvNa5mAj3tB2g
http://www.google.com/url?q=http%3A%2F%2Fwww.adafruit.com%2Fdatasheets%2Fsn74lvc245a.pdf&sa=D&sntz=1&usg=AFQjCNEFIPRlSrZm9KlEq4J1a9V0z1mGFg
http://www.google.com/url?q=http%3A%2F%2Fwww.ee.nmt.edu%2F~wedeward%2FEE382%2FSP01%2F2322_18V_motor.pdf&sa=D&sntz=1&usg=AFQjCNH-Z75W33U_6zdXJpSFK6jQFA3mTg
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.unca.edu%2F~bruce%2FSpring07%2F180%2Fdhb-v2.pdf&sa=D&sntz=1&usg=AFQjCNH4Cl0wrKyhEBF8FJIz_YyYSlXs6A
http://www.google.com/url?q=http%3A%2F%2Fwww.altera.com%2Feducation%2Funiv%2Fmaterials%2Fboards%2Fde0-nano%2Funv-de0-nano-board.html&sa=D&sntz=1&usg=AFQjCNHqTCxiV9OZJfG23qcj9EJwB9Ncwg

Appendix A
Master Arduino Due Code

/* TEAM SAFIRE Encoder Arduino Due Master
%

* By Nathaniel Miller

* Last edited 5 -5 -2014

*

*/

[/ sk kst kst sk skt sk ki sk kit ok siotokskostolokokostdokasiot ok siotkokokoskokokoskdok ok soksiokkoksiok ok ok ok ok ok ok
[/ sk sk sk sk sk sk skt sk sk sk skt sk sk sk skoskskskskskoststsk skt sk skoskskoskskskoskststokok ok kol kkskskoskskskoskskskskskok sk ko skkskskoskskoksk koo sk kR kR ok

//include needed files
#include <Average.h>
#include <Wire.h>

#include <PID_v1.h>
#include <DistanceSRF04.h>
#include <Servo.h>

[/ s sk sk sk sk skt stk sk sk skt sk sk sk sk sksk skttt kot sk sk skskskskskskskststoksk ok kol kkskskoskskskoskskskskokk sk ko skl skl koo Rk kR ok ok
[/ st s s sk sk skt e stk e sk skt st skt skt etk s skt kit ekt etk skt okttt skt ookt sokoskokookoskoksokokokskokokokokok

//pin definitions

#define Ap 2 //set pins for motor direction control
#define An 3 //A -> Right Motor

#define Bp 4 //B -> Left Motor

#define Bn 5

#define Aenable 6 //set pins for motor speed control
#define Benable 7

#define button_start pin 8 //button press for start

#define echo90 22 /lecho and trigger pins for ultrasonics
#define trigd0 23

#define echo60 24

#define trig60 25

#define echo30 26

#define trig30 27

#define echo0 28

#define trig0 29

#define echo_30 42

#define trig_30 43

#define echo_60 44

#define trig_60 45

#define echo 90 46

#define trig_90 47

//constant and factor definitions

#define qnum 16 //factor reduced by ripple counter (2°Q)
#define forward 4095.0 //quarter speed of max of 4096
#define correction_factor 50.0 //corrects for off course

#define wheel diameter 9.6063 //distance between wheels

#define danger threshold fwd 15.0 //dangerous distances
#define danger_threshold_side 10.0

#define minSide 10.0 //minimum distances

#define minForward 15.0

#define min_move past 10 //minimum move distance

#define max_angle off 0.2 //max angle off

#define size y 100 //100/96 factor

#define mindist 200 //minimum ultrasonic distance in centimeters
#define iterations 3 //mumber of iterations for wii camera

#define max_time between_fire 100 //maximum time to elapse between fire detects
#define line_trip 250 //white line trip threshold

//**

36

37

//**

//Function Prototypes - see functions for descriptions
void getDistance(void);

void updatePID(void);

void saveOldData(void);

void calculateLocation(void);
void toPrint(void);

void ultrasonicDistances(void);
void closestObject();

void turnTo(void);

void robotSearch(void);

void setFactor(void);

void wiiCam(void);

void servoSearch(void);

void servoBlow(void);

void trackFire(void);

void lineCheck(void);

[/ s sk kst kst s sk skt ki sk ookt kit sokokostodokokosk koot sdoksiotookokok ookl sokiotskokoiok dokokosdooksok okl kok
[/ sk sk sk sk sk skttt ok ok ok sk sk sk sksk sk sk kit okt skoskskskskskskskskokok ok kkksksksksk sk skskskskokokk ko skoksksk skl koo ok ok ok kok ok

//distance variables
byte from_slave[8] = {0}; //data recieved from slave

long newLeft = 0; //variables for distance
long oldLeft = 0,

long newRight = 0;

long oldRight = 0;

double factor =.0001699389 * qnum; //inches per state change
double dist_trav_left = 0.0; //distance travelled by wheel
double dist_trav_right = 0.0;

double dist_trav_left old = 0.0; //old distance travelled by wheel
double dist_trav_right old =0.0;

double delta_trav_left=0.0; //distance travelled since last update
double delta_trav_right = 0.0;
double difference_trav = 0.0, //difference between delta trav

double delta_trav_left old =0.0; //old delta trav
double delta_trav_right old = 0.0;

[/ st s sk st e s skt sk ek sk sk skt skt kst ekt st ook ook koot skt skt skt otk sdotokoskok okl okl dokokokok

//wii camera variables

byte data_buf[16]; //buffer variable
int i; //counter

int Ix[4]; //actual values
int Iy[4];

int s;

int data_x_ave; //averaged values

int data_y ave;

int data_x_under[iterations]; //data to be averaged
int data_y underfiterations];

int count; //counter

[/ st s sk sk st st e sk sk s e s ok sk sk sk sk sk sk sk ok st stk stk sk skt sk sk skt st stk sk stk sk sk sk sk sk skt st kst sk skt sk koot s sk sk st stk skokskosk skokokskok okokok

//servo variables

volatile int servopos = 0; //servo position

int toadd = 1; //positions to increment

Servo myservo; / create servo object to control a servo

#define num_servo_pos 5 /Isize of servo position array

int servo_array[num_servo_pos] = {10, 45, 90, 135, 170}; //servo position

[/ o st st s sk st st e sk ot st ke s ok st s sk sk sk sk sk sk st s stk kst st skt sk sk sk st skt stk stk stk skt sk sk skt kot sk sk sk skokoskskokok ook ook sokokokok

//PID and velocity variables

double Setpoint_Left = 0.0, //variables for PID
double Setpoint Right = 0.0;

double Velocity Left= 0.0,

double Velocity Right = 0.0;

38

double Output_Left = 0.0,
double Output_Right = 0.0,

//Define the aggressive and conservative Tuning Parameters
double aggKp = 100.0; //variables for PID
double aggKi = 20.0;

double aggKd = 2.0;

double consKp = 25.0;

double consKi = 2.0;

double consKd = 0.2;

//Specify the links and initial tuning parameters
PID PID_Left(&Velocity Left, &Output Left, &Setpoint Left, consKp, consKi, consKd, DIRECT);
PID PID_Right(&Velocity Right, &Output Right, &Setpoint Right, consKp, consKi, consKd, DIRECT);

int right_freq = forward; //initialize speed to full speed
int left_freq = forward,

long start time left = 100.0; //variables for velocity
long start_time_right = 100.0;

double velocity left = 15.0; //velocity calculations
double velocity right =15.0;
double delta_v_left =0.0, delta_ v _right =0.0; //change in velocity

[sk sk s sk sk sttt stttk sk sk sk sk skttt sk sk ookttt okl kokokkokokoskoksosk kR okokokokok

//position variables

boolean turn_in_progress = false; //flag for turning
int finish_turn = 0; //status of turn

double xCoord = 0.0; //x and y coordinates for current location
double yCoord = 0.0,

double deltax = 0.0; //change in x/y
double deltay = 0.0;

double theta = 0.0; //angle relative to start
double desired theta = 0.0;

double theta_new = 0.0; //new angle

double radius_prime = 0.0; //radius of curve
double magnitude = 0.0; //distance travelled

double temp = 0.0;

[s sk sk st sk skt sk skt sk skt stk koot dolokstol okskodslolstodoslkokok dolkokoskosdokokskodsokoskodskokoskdokokoskoslkokskoslskokosk okl okl ok ok

//ultrasonic variables

DistanceSRF04 Dist0; //initialize modules for each sensor
DistanceSRF04 Dist30;

DistanceSRF04 Dist60;

DistanceSRF04 Dist90;

DistanceSRF04 Dist 30;

DistanceSRF04 Dist 60;

DistanceSRF04 Dist 90;

double distance0 = 80; //distance variables

double distance30 = 80; //note all distances scaled by 1000 (1000 units = 1 inch)
double distance60 = 80;

double distance90 = 80;

double distance 30 = 80;

double distance 60 = 80;

double distance 90 = 80;

double closestLeft = 0; //closest object
double closestRight = 0;
double closestForward = 0;

[sk sk sk s sk sttt stttk sk sk sk sk skoskoskossestesteststtkk sk sk skokoskoskoskosestesteststttokok skokokokokskokststoskkkk kokkokokokokoksok sk okokokkok

//motor direction

double right_direction = 0; //sets direction of motors
double left_direction = 0;

[/ s kst kst sk skt ok sk st ok stk ok siotookskostookokostodokasiot ok siotskokokoskdokokosk ok ot ok siokskoksiok ok oksoR ok ok ok

//motor speed variables
boolean set_ Ap = false; //H-Bridge enable pins
boolean set_An = false;
boolean set Bp = false;
boolean set Bn = false;

”**
//robotSearch

int allow_y = 1; //allow y movement
int scan_up = 1; //scan direction

int negate = 1; //case for negation

int flip = 0; //for flipped direction

int check other = 0; /Icheck opposite side
int x_pos_clear = 0; //directions clear

int X_neg_clear = 0;
inty pos_clear =0;
inty neg clear =0;
N**

/hav stuff
int turn_direction = 1;

volatile inti_see fire = 0;
volatile int run_once = 0;

volatile int fire_servo_pos =-1;

double time_since_fire = 0.0;
double last_fire time = 0.0;

N**
volatile int last_wii = 0;

const int sensorPin = AQ; // pin that the sensor is attached to

const int sensorPinLeft = A1; // pin that the sensor is attached to

const int sensorPinRight = A2; // pin that the sensor is attached to

// variables for line sensors

int sensorValue = 0; // the sensor value

int sensorMin = 500; // minimum sensor value

int sensorMax = 0; // maximum sensor value

int sensorValueLeft = 0; // the sensor value

int sensorMinLeft = 500; // minimum sensor value
int sensorMaxLeft = 0; // maximum sensor value
int sensorValueRight = 0; // the sensor value

int sensorMinRight = 500; // minimum sensor value
int sensorMaxRight = 0; // maximum sensor value
int line_stop = 0; //stop due to line sensor

[s st sk st sk skt sk kst sk skt etk dkokotdolokoskosl kokstodslokostodoslkokokdolkokoskosdokokskodslokoskodskokoskdokokoskoslkokskoslskokkodokokoskodok kool ok
/R sk sk sk sk skttt ok ok sk sk sk sk sk sk sk sk skt okokokk sk skoskskskskoskskskskokokk ko skskskskskskskskokokk okl ok sksksk sk skl koo ok ko kok ok

void setup()

Serial.begin(115200); //setup computer serial monitor
Serial.println("Start Program");

while (millis() < 5000) { /[calibrate sensors

39

sensorValue = analogRead(sensorPin); //read initial value
sensorValueLeft = analogRead(sensorPinLeft);
sensorValueRight = analogRead(sensorPinRight);

// record the maximum sensor value
if (sensorValue > sensorMax) {
sensorMax = sensorValue;
}
if (sensorValueLeft > sensorMaxLeft) {
sensorMaxLeft = sensorValueLeft;
}
if (sensorValueRight > sensorMaxRight) {
sensorMaxRight = sensorValueRight;

}

// record the minimum sensor value
if (sensorValue < sensorMin) {
sensorMin = sensorValue;
}
if (sensorValueLeft < sensorMinLeft) {
sensorMinLeft = sensorValueLeft;
}
if (sensorValueRight < sensorMinRight) {
sensorMinRight = sensorValueRight;
}
)

pinMode(Ap, OUTPUT); //set motor control pins for output
pinMode(An, OUTPUT);

pinMode(Bp, OUTPUT);

pinMode(Bn, OUTPUT);

pinMode(Aenable, OUTPUT);

pinMode(Benable, OUTPUT);

pinMode(button_start pin, INPUT); //set button pin to input

analogWriteResolution(12); //set high pwm resolution max = 4095
slaveAddress = IRsensorAddress >> 1; // Address of camera

Velocity Left=0.0; //initialize PID variables
Velocity Right = 0.0,

Setpoint_Left = 40.0;

Setpoint_Right = 40.0;

set_Ap = false; //set H-Bridge to stopped position

set_An = false;

set Bp = false;

set_Bn = false;

digitalWrite(Ap, set_Ap); //write to H-Bridge pins

digital Write(An, set An);

digital Write(Bp, set_Bp);

digital Write(Bn, set_Bn);

analogWrite(Aenable, forward - 2000); //set starting motor speed to 1/2 max
analogWrite(Benable, forward - 2000);

PID Left.SetMode(AUTOMATIC); //turns on PID

PID Right.SetMode(AUTOMATIC);

PID_Left.SetOutputLimits(0, forward - 1.0); //set max/min changes
PID_Right.SetOutputLimits(0, forward - 1.0);
PID_Left.SetSampleTime(20); //evaluate PID more often
PID_Right.SetSampleTime(20);

Dist90.begin(echo90, trig90); //start ultrasonics
Dist60.begin(echo60, trig60);
Dist30.begin(echo30, trig30);

41

Dist0.begin(echo0, trig0);

Dist_30.begin(echo_30, trig_30);
Dist_60.begin(echo_60, trig_60);
Dist_90.begin(echo_90, trig_90);

delay(500); /Iwait for other due and sensors to setup
Wire.begin(); //setup as master for 12C

Write 2bytes(0x30, 0x01); delay(10); //Control byte, allows modification of settings

Write 2bytes(0x06, 0xc8); delay(10); // 10 MAXSIZE - Maximum blob size. Wii uses values from 0x62 to 0xc8.

Write 2bytes(0x08, 0xc0); delay(10); // 15 GAIN - Sensor Gain. Smaller values = higher gain. Numerical gain

Write 2bytes(0x1A, 0x40); delay(10); // 10 GAINLIMIT - Sensor Gain Limit. Must be less than GAIN for camera to function
Write 2bytes(0x1B,0x03); delay(10); // * MINSIZE - Minimum blob size. Wii uses values from 3 to 5

Write 2bytes(0x33, 0x33); delay(10); //

Write 2bytes(0x30, 0x08); delay(10); /Was Out of order, needs to be at end

delay(100);

while (digitalRead(button_start pin) == LOW); //wait for button press

set Ap = true; //start moving forward
set Bp = true;

digitalWrite(Ap, set_Ap); //turn on motors
digital Write(Bp, set_Bp);

}

[/ R sk kst sk skt s kit okt stk kit sokokostookokost koot sokiotsokokok dokokokdoksiotskokoiokskokoskok ok ok ok skokox
/R sk sk sk sk sk skttt sk kR sk sk sk sk sk sk sk kit okl sk sk sk sksksksksk kit kR sk skl skl skoskskskokok kR sk skosk sk skskokokokok

void loop()

setFactor();
getDistance();
updatePID();
calculateLocation();
ultrasonicDistances();
closestObject();
toPrint();
saveOldData();
wiiCam();
robotSearch();
turnTo();
servoSearch();
trackFire();

}

/**
*

*calculateLocation function

*input none

*output none

*uses global variables

*determine X, y, and theta location of robot
%

*/

void calculateLocation(void)

if (delta_trav_left !=0 || delta_trav_right !=0) //check for new data

{
difference trav = delta_trav_left - delta_trav_right; //set difference travelled
difference_trav = abs(difference_trav); //take absolute of distance travelled
theta_new = (difference trav / wheel diameter); //determine new theta

if ((delta_trav_left > delta trav_right) && theta new !=0) //check for right turn

{

radius_prime = (delta_trav_right / theta_new) + (0.5 * wheel_diameter); //radius of turn

temp = cos(theta_new);

deltay = radius_prime * (1.0 - temp); //change y for relative axis
temp = sin(theta_new);
deltax = radius_prime * temp; //change x for relative axis
if (deltax == 0) //check for change in x
temp = 0; //set angle addition to 0
else
temp = atan(deltay / deltax); //calculate angle change
if (deltay < 0 && deltax < 0 && temp != 0) //determine angle quadrant

temp = temp - 3.1416;
else if (deltax < 0 && deltay > 0 && temp !=0)
temp = temp + 3.1416;

theta = theta + temp; /lapdated angle
magnitude = sqrt(deltax * deltax + deltay * deltax); //magnitude of distance travelled
temp = sin(theta);

yCoord = yCoord - (magnitude * temp); //change in'y
temp = cos(theta);
xCoord = xCoord + (magnitude * temp); //change in x
}
else if (theta_new !=0) /lcase for left turn
{

radius_prime = (delta_trav_left / theta_new) + (0.5 * wheel diameter); //radius of turn
temp = cos(theta_new);

deltay = radius_prime * (1.0 - temp); //change y for relative axis
temp = sin(theta_new);
deltax = radius_prime * temp; //change x for relative axis
if (deltax == 0) //check for change in x
temp = 0; //set angle addition to 0
else
temp = atan(deltay / deltax); //calculate angle change
if (deltay < 0 && deltax < 0 && temp != 0) //determine angle quadrant

temp = temp - 3.1416;
else if (deltax < 0 && deltay > 0 && temp != 0)
temp = temp + 3.1416;

theta = theta - temp; //updated angle
magnitude = sqrt(deltax * deltax + deltay * deltay); //magnitude of distance travelled
temp = sin(theta);

yCoord = yCoord - (magnitude * temp); //change in 'y

temp = cos(theta);

xCoord = xCoord + (magnitude * temp); //change in x
¥

}
}

//***
/**
*

*closestObject function
*input none

*output none

*uses global variables

*sets closest objects based on ultrasonics
%

*/

void closestObject(void)

{

int temp = 0;

//find closes forward object on front three ultrasonics

closestForward = distance0; //guess front ultrasonic sees closest object
temp = distance30 * 0.866; //set temporary value to check
if (temp < closestForward) //case for right angled ultrasonic closer
{

closestForward = temp; //set new value as closest
}
temp = distance 30 * 0.866; //set temporary value to check
if (temp < closestForward) //case for left angled ultrasonic closer
{

closestForward = temp; //set new value as closest
}

//find closes left side object on side two ultrasonics, comments similar and ommited
closestLeft = distance 90;

temp = distance 60 * 0.866;
if (temp < closestLeft)
{

closestLeft = temp;

}

//find closes right side object on side two ultrasonics
closestRight = distance90;

temp = distance60 * 0.866;
if (temp < closestRight)
{

closestRight = temp;

}

//***
/**
*

*getDistance function

*input none

*output none

*uses global variables

*updates rotation counter by taking data from slave Due via 12C
*also updates distances

%k
*/
void getDistance(void)
{
int counter = 0; /Ivariable for for loops
double temp = 0.0; //temporary variable
Wire.requestFrom(2, 8); //request data from slave Due
while (Wire.available()) //able to transmit
{
from_slave[counter] = Wire.read(); //save incoming array to variable
counter++; //increment counter
}
Wire.endTransmission(); //finish recieving
union newLeft tag { //union to convert array to long
byte newLeft b[4]; //array of 4 bytes
long newLeft fval; //long int is final value
} newLeft U; //name of union
union newRight_tag { //union for right side

byte newRight b[4];

44

long newRight_fval;
} newRight U;

for (counter = 0; counter < 4; counter++) //walk through data
newLeft U.newLeft b[counter] = from_slave[counter]; //populate union with array elements
I}lewLeft =newlLeft U.newLeft fval; //creating long from transmitted data
for (counter = 0; counter < 4; counter++) //walk through remaining data
newRight_U.newRight_b[counter] = from_slave[counter + 4]; //populate union with array elements

}

newRight = newRight U.newRight fval; //creating long from transmitted data

temp = newLeft - oldLeft; //determine delta from counters

temp = abs(temp); //absolute of counters

temp = temp * factor * left direction; //change based on direction information and offset factor
dist_trav_left += temp; //update distance travelled

temp = newRight - oldRight; //same as above for right side

temp = abs(temp);
temp = temp * factor * right direction;
dist_trav_right += temp;

delta_trav_left = (dist_trav_left - dist_trav_left old); //set delta travelled
delta_trav_right = (dist_trav_right - dist _trav_right old);

delta_trav_left = abs(delta_trav_left); //absolute of distance travelled
delta trav_right = abs(delta_trav_right);

//***
/**
*

*robotSearch function

*input none

*output none

*uses global variables

*moves around field in center search algorithm mode
%

*/
void robotSearch(void)

{

//below center line
if (((yCoord + wheel diameter * .5) <size y/2) && (y_pos_clear == 0) && allow_y == 1)

if ((theta > (1.57 + max_angle off)) || (theta < (1.57 - max_angle off))) //correct if not moving in desired direction
desired theta = negate * 1.57; //sets desired direction

}
}

//above center line
else if (((yCoord - wheel diameter * .5) > size y/2) && (y_neg_clear == 0) && allow_y == 1)

if ((theta > (-1.57 + max_angle off)) || (theta < (-1.57 - max_angle off))) //correct if not moving in desired direction

desired theta = negate * -1.57; //sets desired direction

}
}
//when at center line
else if (scan_up == 1) //scan up field
{

//x direction is clear

if (x_pos_clear == 0)

if ((theta > (max_angle off)) || (theta < (max_angle off))) //correct if not moving in desired direction

{
desired theta =0 + ((negate + 1) /2) * 3.14; //sets desired direction

}

else //when x direction not clear, move in y direction

{
allow y-=1; /Isets y direction flag

}

if (allow_y <min_move_past) //when moved sufficiently in y direction past barrier
allow y=1; //reset y flag

}

//x direction not clear
else if ((y_pos_clear == 0) && (check_other == 0))
{

//move in positive y direction until clear
if ((theta > (1.57 + max_angle off)) || (theta < (1.57 - max_angle off))) //correct if not moving in desired direction

desired_theta = 1.57; //sets desired direction

}

allow_y =0; //do not allow y movement

}

/% not clear and positive y not clear
else if (x_pos_clear == 1) && (y_pos_clear == 1))

check_other =1; //set opposite y direction flag
allow_y=0; //reset movement in y to not allowed

}

//move in negative y direction
if (check other == 1)
{

//if'y negative clear
if (x_pos_clear == 1) && (y_neg_clear == 0))
{

if ((theta > (-1.57 + max_angle off)) || (theta <(-1.57 - max_angle off))) //correct if not moving in desired direction

desired_theta =-1.57, //sets desired direction

!
}

//cannot move in positive x direction whatsoever
else if ((x_pos_clear == 1) && (y_neg_clear == 1) && (flip == 0))
(

1
check other = 0; //reset flag to check both y directions
allow_y =1; //reallow y movement
flip=1; /Mlip directions
negate = negate * -1; //move in opposite direction

}

//cannot move in positive x direction whatsoever
else if ((x_pos_clear == 1) && (y_neg_clear == 1) && (flip == 1))

check other = 0; /Ireset flag to check both y directions
allow y=1; //reallow y movement
flip = 0; /Mlip directions
negate = negate * -1; //move in opposite direction
}

}

45

}

/***
/**
*

*saveOldData function
*input none

*output none

*uses global variables

*saves distance and count data to variables for later reference to determine deltas
%

*/
void saveOldData(void)

dist_trav_left old = dist_trav_left; //save distance travelled
dist_trav_right_old = dist_trav_right;

oldLeft = newLeft; //save old data encoder data
oldRight = newRight;

delta_trav_left old = delta_trav_left; //save old deltas
delta trav_right old = delta trav_right;

[sk ke sk sk sk sk stttk sk sk sk sk sk skosk sksk skttt ok kst sk skokskoskskosksksttskk sk kol sk kokskokosk kool sk kR skl sk skok ok
[sk st s s sk st s skt e st sk skt skt ettt ekt sk koot sttt etk skt okt ttokok koot sdolokoskoskokokskodokokokodok
*

*setFactor function
*input none

*output none

*uses global variables

*sets directional factor
%

*/

void setFactor(void)

{
right_direction = ((-1 * set_An) + set_Ap); //set direction of right wheel movememnt based upon enable pins
left_direction = ((-1 * set Bn) + set Bp); //set direction of left wheel movememnt based upon enable pins

N***
/**
*

*toPrint function

*input none

*output none

*uses global variables

*prints desired variables

*format for printing: Serial.print(" your string here ");
* Serial.println(your_variable_here);

*comment or uncomment desired information to print to screen
*

*/
void toPrint(void)

{

//print statements in this loop only print when new data from the encoders is recieved

if (newLeft != oldLeft || newRight != oldRight)

{
Serial.print(newLeft);
Serial.print(" - ");
Serial.print(newRight);
Serial.print(" - ");
Serial.print(dist_trav_left, 7);
Serial.print(" - ");
Serial.print(dist_trav_right, 7);
Serial.print(" - ");
Serial.print(xCoord, 7);
Serial.print(" - ");

46

Serial.print(yCoord, 7);
Serial.print(" - ");
Serial.println(theta, 7);

Serial.print(Velocity Left, 7);
Serial.print(" - ");
Serial.print(Velocity Right, 7);
Serial.print(" - ");
Serial.print(Output_Left, 7);
Serial.print(" - ");
Serial.print(Output_Right, 7);
Serial.print(" - ");
Serial.print(delta_trav_left, 7);
Serial.print(" - ");
Serial.println(delta_trav_right, 7);

}

Serial.print(distance 90);
Serial.print(" - ");
Serial.print(distance 60);
Serial.print(" - ");
Serial.print(distance_30);
Serial.print(" - ");
Serial.print(distance0);
Serial.print(" - ");
Serial.print(distance30);
Serial.print(" - ");
Serial.print(distance60);
Serial.print(" - ");
Serial.println(distance90);

Serial.print(closestLeft);
Serial.print(" - ");
Serial.print(closestRight);
Serial.print(" - ");
Serial.println(closestForward);

[/ stk stk stk ekt stttk kol fsofesiole ol el st stk il kst sl ol kool ksl sl okl sk ok sk ok
/**
*

*turnTo function

*input none

*output none

*turn based on set desired angle
%

*/

void turnTo(void)

//turn left
if ((theta > (desired_theta)) && (turn_in_ progress == true) && (finish_turn <= 0))

set_Ap = true; //set enables for left turn
set An = false;

set Bp = false;

set_Bn = false;

digital Write(Ap, set Ap);

digital Write(An, set_An);

digital Write(Bp, set_Bp);

digital Write(Bn, set_Bn);

Setpoint_Left = 40; //set speed for turn
Setpoint_Right = 40;
finish_turn =-2; //set last turn indicator

}

//turn right
else if ((theta < desired_theta) && (turn_in_progress == true) && (finish_turn >= 0))

set Ap = false; //set enables for right turn
set_An = false;
set Bp = true;

set_Bn = false;

digitalWrite(Ap, set_Ap);
digital Write(An, set An);
digitalWrite(Bp, set_Bp);
digital Write(Bn, set_Bn);

Setpoint_Left = 40; //set speed for turn
Setpoint_Right = 40;
finish_turn = 2; //set last turn indicator

}

//turn just completed

else if (turn_in_progress == true)

{
set_Ap = true; /Ireset to forward direction
set An = false;
set_Bp = true;

set_Bn = false;

digital Write(Ap, set Ap);
digital Write(An, set_An);
digital Write(Bp, set_Bp);
digital Write(Bn, set_Bn);

turn_in_progress = false; /Ireset turn flag
finish_turn = 0; //reset last turn indicator
Setpoint_Left = 40; //set speed
Setpoint_Right = 40;

}

/lensure forward direction
else
{
set_Ap = true; //reset to forward direction
set_An = false;
set Bp = true;
set_Bn = false;
digital Write(Ap, set Ap);
digital Write(An, set_An);
digital Write(Bp, set_Bp);
digital Write(Bn, set_Bn);

Setpoint_Left = 40; //set speed
Setpoint_Right = 40;
}
}

//***
/*

* ultrasonicDistances function

* inputs none

* outputs none

* uses global variables

* finds and returns distance information

* uses staggered method to ensure reflections do not affect other sensors

%

0

-30=/ \=30

*
*
*

* -60=/\=60

* 290 =| =90
%
*/
void ultrasonicDistances(void)
{
int temp = 0;

//front sensor

temp = Dist0.getDistanceCentimeter(); //get distance from sensor in centimeters

if (temp > 0 && temp < mindist) //when non-zero and less than 200 centimeters
distance0 = .4 * temp; //convert and save in inches

else
distance0 = 80; //lassume greater than 80 inches

//left 90

temp = Dist_90.getDistanceCentimeter();
if (temp > 0 && temp < mindist)
distance_90 = .4 * temp;
else
distance 90 = 80;

//right 30
temp = Dist30.getDistanceCentimeter();
if (temp > 0 && temp < mindist)
distance30 = .4 * temp;
else
distance30 = 80;

//left 60
temp = Dist_60.getDistanceCentimeter();
if (temp > 0 && temp < mindist)
distance 60 = .4 * temp;
else
distance 60 = 80;

//right 60
temp = Dist60.getDistanceCentimeter();
if (temp > 0 && temp < mindist)
distance60 = .4 * temp;
else
distance60 = 80;

/Neft 30
temp = Dist_30.getDistanceCentimeter();
if (temp > 0 && temp < mindist)
distance_30 = .4 * temp;
else
distance 30 = 80;

/fright 90
temp = Dist90.getDistanceCentimeter();
if (temp > 0 && temp < mindist)
distance90 = .4 * temp;
else
distance90 = 80;

//***
/**
*

*updatePID function

*input none

*output none

*uses global variables

*updates PID values and correct motor speeds
*also updates velocity, delta d travelled

*

*/

void updatePID(void)

{
Velocity Left =abs(1000.0 * (delta_trav_left) / ((double)(millis() - start_time left))); //determine velocity of left wheel
start_time_left = millis(); ~//reset time counter

Velocity Right = abs(1000.0 * (delta_trav_right) / ((double)(millis() - start time right))); //determine velocity of right wheel
start_time right = millis(); //reset time counter

delta_v_left = Setpoint_Left - Velocity_Left; //determine delta velocities

delta v _right = Setpoint Right - Velocity Right;

double gap Left = abs(delta_v_left); //determine offset from desired velocity
double gap Right = abs(delta_v_right);

if (gap_Left <.0001) //close case

PID_Left.SetTunings(consKp, consKi, consKd); //run PID correction for left wheel
ilse //far off case

{PID_Left.SetTunings(agng, aggKi, aggKd); //run PID correction for left wheel
}
if (gap_Right <.0001) /Iclose case

PID_Right.SetTunings(consKp, consKi, consKd); //run PID correction for right wheel
ilse //far off case

PID_Right.SetTunings(aggKp, aggKi, aggKd); //run PID correction for right wheel
}

PID_Left.Compute(); //calculate PID equation for new output
PID_Right.Compute();

analogWrite(Benable, Output_Left); //sets speed sent to H-Bridge
analogWrite(Aenable, Output Right);

//***
/**
*

*wiiCam function
*input none

*output none

*uses global variables

*recieve wii data input
*

*/
void wiiCam(void)

{

Wire.beginTransmission(slaveAddress); //IR sensor read
Wire.write(0x36);
Wire.endTransmission();

Wire.requestFrom(slaveAddress, 16); // Request the 2 byte heading (MSB comes first)

for i=0;1<16;i++) // initialize buffer
{

data_buf[i] =0;
)
i=0;

50

while (Wire.available() && i< 16) { //Read data from wii cam
data_bufli] = Wire.read();

i+t

}

Ix[0] = data_buf[1]; //sort x data
s =data buf[3];
Ix[0] += (s & 0x30) << 4;

s

if (count < iterations - 1) { //get normal x data to be averaged
if (Ix[0] < 1023) {
data x_under[data x_under[iterations - 1]] = Ix[0]; //save to variable to be averaged

data_x_under[iterations - 1]++; //increment counter
}
count++;
}
else //average values obtained

if (data_x_underf[iterations - 1] > 0) { //case for valid data
for (1= 0;1i<data_x_under[iterations - 1]; i++) {
data_x_ave =data_x_ave + data_x_under[i]; //sum values

}

data_x_ave =data_x_ave/data_x_under[iterations - 1]; //average values
}
else /mo values below 1023 or above 0

data_x_ave = 1023;
Ix[0] = data_x_ave; //set to average data
for 1=0;1<4;itt) //print data to screen

{
if (Ix[i] < 1000)
Serial.print(" ");
if (Ix[i] < 100)
Serial.print(" ");
if (Ix[i] < 10)
Serial.print(" ");
Serial.print(int(Ix[i]));
}

Serial.println("");

count = 0; //reset variables
data x _ave=0;
for (i = 0; i < iterations; i++) {
data_x_under[i] = 0;
¥
)
}

void Write 2bytes(byte d1, byte d2)

{
Wire.beginTransmission(slaveAddress);
Wire.write(d1); Wire.write(d2);
Wire.endTransmission();

}

[k sk ks kk sk sk sk kit okok sk sk koksk sk sk skoskskskokskokok sk kokoksk sk sk skt kool sk skoskskskskskoskskokok sk sk ko kkosk ok ok

*

*trackFire function

*input none

*output none

*uses

*record servo position when fire seen

51

*
*/
void trackFire(void)

if(fire_servo_pos >=0 || servopos ==0) //fire seen

{
myservo.write(servo_array[fire_servo_pos]); //move to fire position
delay(4000);
fire_servo_pos =-1; //set fire flag

}

/**
*

*servoSearch function

*input none

*output none

*uses global variables

*pans servo and checks UV tron

%k

*/

void servoSearch(void)

{
myservo.write(servo_array[servopos]); //pan servo
if (servopos == 0)

delay(1000);
servopos = servopos + toadd; //increment servo position
if (servopos > (num_servo_pos - 1)) //reset servo counter

servopos = 0;
)
checkUV(); //run UV tron function
)

sttt ks otttk stk stole sl el kst skttt sl il ol ol il sl skt sl sl ksl skl il kol Rk okl ook
*

*servoBlow function
*input none
*output none
*uses global variables
*pans servo and blows fan
%
*/
void servoBlow(void)
{ .
int pos;
digital Write(fan_pin, HIGH); //turn on fan
for(pos = 0; pos <= 180; pos += 1) // goes from 0 degrees to 180 degrees

{ // in steps of 1 degree
myservo.write(pos); // tell servo to go to position in variable 'pos’
delay(25); // waits 15ms for the servo to reach the position

}
for(pos = 180; pos>=0; pos-=1) // goes from 180 degrees to 0 degrees
{

myservo.write(pos); // tell servo to go to position in variable 'pos
delay(25); // waits 15ms for the servo to reach the position

digital Write(fan_pin, LOW); //turns off fan
myservo.write(90); //resets fan
delay(25);

)

/**
*

*getDistance function
*input none

*output none

*uses global variables

52

*randomly searches for fire
%

*/
void randomSearch(void)

//fire seen
if (Ix[0] = 1023 || Ix[0] != 0)
{

//ire close
if (distance0 < 10.0 || distance30 < 10.0 || distance60 < 10.0 || distance90 < 10.0 || distance_30 < 10.0 || distance_60 < 10.0 ||
distance 90 < 10.0)

set Ap = false; //stop
set Bp = false;

digitalWrite(Ap, set_Ap);

digital Write(Bp, set_Bp);

servoBlow(); //blow out fire
Setpoint_Left = 30.0; /Ireset speeds
Setpoint_Right = 30.0;

set_Ap = true; //resume movement
set Bp = true;

digital Write(Ap, set_Ap);
digital Write(Bp, set_Bp);

myservo.write(90); //reset servo
}
else if (Ix[0] < 100) //fire seen and off angle
{
delay time = 200; //turn to correct
turnTo();
delay time = 500;
last_wii =-1;
}
else if (Ix[0] > 900) //fire seen and off angle
{
delay time = 100; //turn to correct
turn_direction = -1;
turnTo();
delay_time = 200;
last wii=1;
1
3]
else if (last_wii == 1) //fire lost recently
{
delay time = 300; //turn to last known location
turn_direction = -1;
turnTo();
delay time = 500;
last wii = 0;
}
else if (last_wii ==-1) //fire lost recently
{
delay time = 300; //turn to last known location
turn_direction = 1;
turnTo();
delay_time = 500;
last_wii = 0;
¥

else if (line_stop == 1) //hit line and then rotate
{

turnTo();

turnTo();

}

/lobject too close
else if (distance0 < 10.0 || distance30 < 10.0 || distance60 < 10.0 || distance90 < 10.0 || distance 30 < 10.0 || distance 60 < 10.0 ||
distance_90 < 10.0)
{
delay_time = 500;
turnTo();
}

/**
*

*checkUV function
*input none

*output none

*uses global variables

*check line sensors
%

*/

void lineCheck(void)

{
sensorValue = analogRead(sensorPin); //read initial variables
sensorValueLeft = analogRead(sensorPinLeft);
sensorValueRight = analogRead(sensorPinRight);

// apply the calibration to the sensor reading

sensorValue = map(sensorValue, sensorMin, sensorMax, 0, 500);

sensorValueLeft = map(sensorValueLeft, sensorMinLeft, sensorMaxLeft, 0, 500);
sensorValueRight = map(sensorValueRight, sensorMinRight, sensorMaxRight, 0, 500);

// in case the sensor value is outside the range seen during calibration
sensorValue = constrain(sensorValue, 0, 500);

sensorValueLeft = constrain(sensorValueLeft, 0, 500);
sensorValueRight = constrain(sensorValueRight, 0, 500);

if ((sensorValue > line _trip) || (sensorValueLeft > line_trip) || (sensorValueRight > line trip)) //case for line detected
line_stop = 1;

else
line_stop = 0;

}

/**
*

*checkUV function
*input none

*output none

*uses global variables
*check UV Tron

*

*/

void checkUV(void)
{

if(i_see_fire ==1) //case for fire

{
i_see fire=0; //reset fire flag
fire_servo_pos = fire_servo_pos - 1; //set fire position

54

if(fire_servo_pos < 0)

fire_servo_pos =170;

myservo.write(servo_array[fire servo pos]); //move to fire angle on servo
delay(5000);

55

Appendix B
Slave Arduino Due Code

/* TEAM SAFIRE Encoder Arduino Due Slave
%

* By Nathaniel Miller

* Last edited 5 - 5 - 2014

*

*/

[/ st s s sk st st e sk sk s e s ok sk sk sk sk sk sk sk sk s stk st stk sk sk skt sk ookt st stk s stk sk sk skok s skt stk skt sk skt sk sk skt s sk sk ot stk skokskokskokoskskok okokok

//include needed files
#include <Encoder.h>
#include <Wire.h>

[/ sk sk sk sk sk skttt ok kR sk sk sk sksk sk sk kit sk skosksksk sk skskskkokokokkkksksk skl sk kit kkkokskskoskskskskskosk ook ok ok ok kol ok

//definitions

#define encoder address 2 //lencoder slave address
#define leftA 31; //lencoder pins

#define leftB 33;

#define rightA 35;

#define rightB 37;

Encoder knobLeft(leftA, leftB); //left encoder setup
Encoder knobRight(rightA, rightB); //right encoder setup

volatile byte* INPUT1FloatPtr; //pointers for array to transmit
volatile byte* INPUT2FloatPtr;

long newLeft, newRight; //new encoder data

void setup()

{
Wire.begin(encoder address); //set as slave for 12C
Wire.onRequest(requestEvent); //function for sending

}

void loop()

{
newLeft = abs(knobLeft.read()); //get new position taken by interrupts
newRight = abs(knobRight.read());

}

//function executes when data requested
void requestEvent()

{
byte Data[8]; //data array to send

INPUT1FloatPtr = (byte*) &newLeft; //pointer to location of data to transmit
INPUT2FloatPtr = (byte*) &newRight;

Data[0] = INPUT1FloatPtr[0]; //transfer long to byte array
Data[1] = INPUT1FloatPtr[1];
Data[2] = INPUT1FloatPtr[2];
Data[3] = INPUT1FloatPtr[3];

56

Data[4] = INPUT2FloatPtr[0];
Data[5] = INPUT2FloatPtr[1];
Data[6] = INPUT2FloatPtr[2];
Data[7] = INPUT2FloatPtr[3];

Wire.write(Data, 8);

//transmit requested data

57

Appendix C
Matlab Simulation Code

%% SAFIRE Search Program
%% By Nathaniel Miller
%% Last edited 3-12-14

clear all
close all

global count i

%%Field setup

%%

%Field is 8' x 12'

factor = 1;

resolutionx = 96*factor; %onumber of inches
resolutiony = 144*factor; %number of inches

%let a zero in the grid indicate an open spot with no walls around the spot
%and free to navigate

field_height = zeros(resolutionx, resolutiony);

barrier_height = field_height;

ground = field_height;

%setup boundary walls indicated by white and black lines on the playing
Yfield

for i=1:resolutionx
for j=1:resolutiony
if(i==1 || j==1 || i==resolutionx || j==resolutiony)
field_height(i,j) = 2;
end
end
end

Y%set barriers onto map
%pbarriers can be 18" to 36"
%assume 6" wide barrier

Y%position

xlength = 18*factor;
ylength = 6*factor;

x_1 =40*factor;
y_1 =40*factor;

x_2 = 75*factor;
y_2 =30*factor;

x_3 =40*factor;
y_3 = 100*factor;

x_4 = 30*factor;
y_4 = 120*factor;

58

for i=1:resolutionx
for j=1:resolutiony
if((x_1<=1 && i<=(x_1+xlength) && y_1<=j && j<=(y_l+ylength)) || (x_2<=i && i<=(x_2+xlength) && y 2<=j &&
j<=(y_2+tylength)) || (x_3<=i && i<=(x_3+xlength) && y 3<=j && j<=(y_3+ylength)) || (x_4<=i && i<=(x_4+xlength) && y 4<=j
&& j<=(y_4+ylength)))
field height(i,j) = 2;
end
end
end

Y%plot walls

figure(1)

surf(field_height.', 'FaceColor','red','EdgeColor','none'");
camlight left; lighting phong

axis([0 resolutionx 0 resolutiony 0 10]);

xlabel("X AXIS');

ylabel('Y AXIS");

hold on

surf(ground.', 'FaceColor','black’,'EdgeColor','none");
camlight left; lighting phong

%%

%Robot initialize

robot(10,10) = -1;
robot(3,3) =-1;
robot(3,10) =-1;
robot(10,3) =-1;

robotX =[345678910;345678910;345678910;345678910;345678910;345678910;345678910;3
456789 10];

robotY =[33333333;44444444,55555555:66666666,77777777;88888888;99999999;1010 10
10 10 10 10 10];

1obotZ =[-.1 -1 1 -1 -1-1-1-1;-1333333-1;-1333333-1;-1333333-.1;-1333333-1;-1333333-.1;
S1333333-1;-1-0-1-1-1-1-1-1];

for i=4:9
for j=4:9
robot(i,j) = 3;
end
end

robotX = robotX + ones(size(robotX));
robotY = robotY + ones(size(robotY));

stop = 0;
k=1,

surf _handle = surf(robotX, robotY, robotZ, 'FaceColor','green','EdgeColor','none");
camlight left; lighting phong

campos([25,25,30])

direction = 1;
%1 =+x

%2 =+y
%3 = -x
%4 = -y

allow_x = 1; %%stop x motion if 0 to move up past barrier
scan_up = 1; %%scan in y+ if one

negate = 1; %%

check_other = 0; %%go other direction to check
count_i=1;

flip = 0; %%change direction

n=1;

while(stop ~= 1)

[robotX, robotY, direction, allow_x, scan_up, negate, check other, flip] = robot_search(robotX, robotY, direction, field height,
resolutionx, resolutiony, allow_x, scan_up, negate, check other, flip);

pause(.005);
set(surf_handle,'XData',robotX, 'YData',robotY); % 'ZData', robot);

M(n)=getframe;

n=ntl;
if(n == 1000)
stop = 1;
end
end
numtimes=3;
fps=10;

movie2avi(M, 'robotSearch.avi', 'compression’, 'none');

%%**
%%**
function [robotX, robotY, direction, allow_x, scan_up, negate, check other, flip] = robot_search(robotX, robotY, direction,
field_height, resolutionx, resolutiony, allow_x, scan_up, negate, check other, flip)

Y%function takes robots location from matrix robot and uses direction

%to plot new point based upon obstacle avoidance

global count_i

%based on field resolution
scaler num = 1;

count i=count i+ 1;

%check clear directions
[x_pos, x_neg,y pos,y neg]=is_clear(robotX, robotY, field height);

%case of x clear, y clear, x motion allowed, and robot past centerline
if(robotX(1,1)+length(robotX)/2 > resolutionx/2 && x_neg == 0 && allow_x == 1)
robotX = robotX - scaler num*ones(size(robotX));

%case of x clear, x motion allowed, robot less than center line
elseif(robotX(1,1)+length(robotX)/2 < resolutionx/2 && x_pos == 0 && allow_x == 1)

robotX = robotX + scaler num*ones(size(robotX));

%x movement not allowed or centered but moving up y+
elseif(scan_up == 1)

if(flip==1)
[x_neg, x_pos,y neg,y pos]=is_clear(robotX, robotY, field height);
end

%not to max y and y clear

if(y_pos == 0) %(robotY(1,1)+length(robotY) < resolutiony) && (y_pos == 0))
robotY = robotY + negate * scaler num*ones(size(robotY));
allow x =allow x-1;

%will reallow x after moving past barrier
if(allow_x < -4)

allow_x=1;
end

%y not free - move in x around barrier

elseif(x_pos == 0 && check_other == 0)% && robotX(1,1)+length(robotX)<resolutionx)
robotX = robotX + negate * scaler num*ones(size(robotX));
allow x=0;

Y%set negate for when x and y are blocked
elseif(y _pos==1&& x_pos==1)
fprintf('yes ');
check other = 1;
allow x=0;
end

if(check other == 1)
if(y_pos==1 && x_neg==0)
robotX = robotX - negate *scaler num*ones(size(robotX));

elseif(y_pos==1 && x_neg ==1 && flip ==0)
%scan_up = 0;
check other = 0;
allow x=1;
flip=1;
negate = negate * -1;

elseif(y_pos ==1 && x_neg ==1 && flip==1)
check other = 0;

allow x=1;
flip =0;
negate = negate *-1;
end
end
end

%%**
%%**
function [x_pos, X_neg, y_pos, y _neg | =is_clear(robotX, robotY, field height)

Y%returns directions clear

61

%one indicates not clear

isclear = 0;
for i=0:3
for j=0:length(robotY)-1
isclear = isclear + field height(robotX(1,1) + length(robotX) + i, robotY(1,1) +j);
end
end

if(isclear == 0)
x_pos = 0;
else
X _pos=1;
end

isclear = 0;
for i=0:3
for j=0:length(robotX)-1
isclear = isclear + field_height(robotX(1,1) + j, robotY(1,1) + length(robotY) + i);
end
end

if(isclear == 0)
y_pos =0;
else
y_pos=1;
end

%%
isclear = 0;
for i=0:3
for j=0:length(robotY)-1
isclear = isclear + field_height(robotX(1,1) - i, robotY(1,1) + j);
end

end

if(isclear == 0)
x_neg=0;
else
x_neg=1;
end

isclear = 0;
for i=0:3
for j=0:length(robotY)-1
isclear = isclear + field_height(robotX(1,1) + j, robotY(1,1) - 1);
end
end

if(isclear == 0)

y_neg=0;
else

y_neg=1;
end

end

62

