1. Write the matrix product that will give the resulting rotation matrix for the following sequence of rotations. Do not perform multiplication.
(a) Rotate by α about fixed x-axis
(b) Rotate by β about current z-axis
(c) Rotate by γ about fixed y-axis
(d) Rotate by ϕ about current y-axis
(e) Rotate by ψ about fixed z-axis
(f) Rotate by θ about current x-axis
2. Coordinate frame $\{1\}$ is obtained from frame $\{0\}$ by the following sequence of rotations:
(a) -90° about the fixed z-axis
(b) 90° about the current y-axis
(c) -90° about the fixed x-axis.

Find the resulting rotation matrix C_{1}^{0} and sketch frames $\{0\}$ and $\{1\}$ relative to each other.
3. Consider the rotation matrix

$$
C_{b}^{a}=\left[\begin{array}{ccc}
-0.3536 & 0.1268 & -0.9268 \\
0.6124 & 0.7803 & -0.1268 \\
0.7071 & -0.6124 & -0.3536
\end{array}\right]
$$

(a) What are the Roll-Pitch-Yaw angles (ϕ, θ, ψ) that describe the orientation of frame $\{b\}$ relative to $\{a\}$?
(b) What is the angle-axis (θ, \vec{k}) that describes the orientation of frame $\{b\}$ relative to $\{a\}$?
(c) What is the quaternion \bar{q} that describes the orientation of frame $\{b\}$ relative to $\{a\}$?
4. Given the Roll-Pitch-Yaw angles $(\phi, \theta, \psi)=\left(120^{\circ}, 45^{\circ},-120^{\circ}\right)$, find the rotation matrix that describes the same orientation.
5. Given the angle-axis $(\theta, \vec{k})=\left(90^{\circ}, \frac{1}{\sqrt{3}}[1,1,1]^{T}\right)$, find the rotation matrix that describes the same orientation.
6. Given the quaternion $\bar{q}=[0.5,-0.5,-0.5,-0.5]^{T}$, find the rotation matrix that describes the same orientation.
7. Consider the three coordinate frames $\{\alpha\},\{\beta\}$, and $\{\gamma\}$ shown in the diagram below. Following the notation introduced in the class, find the following Cartesian position vectors (denoted by \vec{r}) and rotation matrices (denoted by C).
(a) $\vec{r}_{\gamma \alpha}^{\gamma}$
(b) $\vec{r}_{\gamma \beta}^{\gamma}$
(c) $\vec{r}_{\gamma \alpha}^{\alpha}$
(d) $\vec{r}_{\gamma \beta}^{\beta}$
(e) C_{α}^{γ}
(f) C_{β}^{γ}
(g) C_{β}^{α}

