- 1. How many multiplies and additions are needed for each of the following computations?
 - (a) composition of rotations via rotation matrices, $C_1^2 C_0^1$
 - (b) composition of rotations via quaternions, $\bar{q}_1^2\otimes \bar{q}_0^1$
 - (c) recoordinatization of a vector via rotation matrix, $C_1^2 \vec{r}^1$
 - (d) recoordinatization of a vector via quaternion, $\bar{q}_1^2\otimes \breve{r}^1\otimes (\bar{q}_1^2)^{-1}$
- 2. Consider the three-link, planar robot shown below for which four coordinate frames have been assigned. Frame $\{0\}$ is fixed, frame $\{1\}$ rotates with angle θ_1 relative to frame $\{0\}$, frame $\{2\}$ rotates with angle θ_2 relative to frame $\{1\}$, and frame $\{3\}$ translates with distance d_3 relative to frame $\{2\}$.

(a) Develop the rotation matrices and displacements between frames and show they are the following.

$$C_{1}^{0} = \begin{bmatrix} c_{1} & -s_{1} & 0 \\ s_{1} & c_{1} & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \vec{r}_{01}^{0} = \begin{bmatrix} a_{1}c_{1} \\ a_{1}s_{1} \\ 0 \end{bmatrix}, \quad C_{2}^{1} = \begin{bmatrix} c_{2} & 0 & -s_{2} \\ s_{2} & 0 & c_{2} \\ 0 & -1 & 0 \end{bmatrix}, \quad \vec{r}_{12}^{i} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
$$C_{3}^{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \vec{r}_{23}^{2} = \begin{bmatrix} 0 \\ 0 \\ a_{3} \end{bmatrix}$$

Note the notation $c_1 = \cos(\theta_1)$ and $s_1 = \sin(\theta_1)$.

(b) Determine the rotation matrix C_3^0 .

- (c) Determine the translation vector \vec{r}_{03}^0 .
- (d) Determine the following angular velocities as skew-symmetric matrices Ω and vectors $\vec{\omega}$. Note θ_1 , θ_2 and d_3 can vary with time.
 - i. $\Omega_{01}^{0}, \vec{\omega}_{01}^{0}$ ii. $\Omega_{12}^{1}, \vec{\omega}_{12}^{1}$ iii. $\Omega_{23}^{2}, \vec{\omega}_{23}^{2}$ iv. $\Omega_{03}^{0}, \vec{\omega}_{03}^{0}$
- 3. Consider the time-varying coordinate transformation matrix C_b^n given below that describes the orientation of the body frame as it rotates with respect to the navigation frame.

$$C_b^n = \begin{bmatrix} \cos(t) & \sin(t)\sin(t^2) & \sin(t)\cos(t^2) \\ 0 & \cos(t^2) & -\sin(t^2) \\ -\sin(t) & \cos(t)\sin(t^2) & \cos(t)\cos(t^2) \end{bmatrix}$$

- (a) Determine the analytic form of the time-derivative of C_b^n (i.e., $\dot{C}_b^n = \frac{dC_b^n}{dt}$) via a term-by-term differentiation.
- (b) Develop MATLAB functions which accept "t" (i.e., time) as a numerical input and return C_b^n and \dot{C}_b^n , respectively, as numerical outputs.
- (c) Using the C_b^n and \dot{C}_b^n functions from above, compute the angular velocity vector $\vec{\omega}_{nb}^n$ at time t = 0 sec (**Hint**: you might want to compute Ω_{nb}^n first).
 - i. What is the magnitude (i.e., $\dot{\theta}$, angular speed) of the angular velocity?
 - ii. About what unit vector (\vec{k}_{nb}^n) has the instantaneous rotation occurred?
- (d) Using the C_b^n and \dot{C}_b^n functions from above, compute the angular velocity vector $\vec{\omega}_{nb}^n$ at time t = 0.5 sec.
 - i. What is the magnitude (i.e., $\dot{\theta}$, angular speed) of the angular velocity?
 - ii. About what unit vector (\vec{k}_{nb}^n) has the instantaneous rotation occurred?
- (e) Using C_b^n and \dot{C}_b^n functions from above, compute the angular velocity vector $\vec{\omega}_{nb}^n$ at time t = 1 sec.
 - i. What is the magnitude (i.e., $\dot{\theta}$, angular speed) of the angular velocity?
 - ii. About what unit vector (\vec{k}_{nb}^n) has the instantaneous rotation occurred?
- (f) In practice, direct measurement of the angular velocity vector $\vec{\omega}_{nb}^n$ can prove challenging, so a finite-difference approach may be taken given two sequential orientations represented by $C_b^n(t)$ and $C_b^n(t + \Delta t)$ a small time Δt apart. Consider the approximate value of the angular velocity vector $\vec{\omega}_{nb}^n$ derived by using the finite difference

$$\dot{C}^n_b(t) \approx \frac{C^n_b(t+\Delta t) - C^n_b(t)}{\Delta t}$$

- at times t = 0, 0.5, and 1 sec. Compare the "analytic" values for $\dot{\theta}$ and \vec{k}_{nb}^n (found in parts b, c and d) with your approximations from the finite difference using $\Delta t = 0.1$ sec. How large are the errors?
- (g) How small does the sampling time (i.e., Δt) need to be to get a "good" (better than 99.9%) approximation of the angular speed (i.e., $\dot{\theta}$)?