1. How many multiplies and additions are needed for each of the following computations?
(a) composition of rotations via rotation matrices, $C_{1}^{2} C_{0}^{1}$
(b) composition of rotations via quaternions, $\bar{q}_{1}^{2} \otimes \bar{q}_{0}^{1}$
(c) recoordinatization of a vector via rotation matrix, $C_{1}^{2} \vec{r}^{1}$
(d) recoordinatization of a vector via quaternion, $\bar{q}_{1}^{2} \otimes \breve{r}^{1} \otimes\left(\bar{q}_{1}^{2}\right)^{-1}$
2. Consider the three-link, planar robot shown below for which four coordinate frames have been assigned. Frame $\{0\}$ is fixed, frame $\{1\}$ rotates with angle θ_{1} relative to frame $\{0\}$, frame $\{2\}$ rotates with angle θ_{2} relative to frame $\{1\}$, and frame $\{3\}$ translates with distance d_{3} relative to frame $\{2\}$.

(a) Develop the rotation matrices and displacements between frames and show they are the following.

$$
\begin{gathered}
C_{1}^{0}=\left[\begin{array}{ccc}
c_{1} & -s_{1} & 0 \\
s_{1} & c_{1} & 0 \\
0 & 0 & 1
\end{array}\right], \vec{r}_{01}^{0}=\left[\begin{array}{c}
a_{1} c_{1} \\
a_{1} s_{1} \\
0
\end{array}\right], C_{2}^{1}=\left[\begin{array}{ccc}
c_{2} & 0 & -s_{2} \\
s_{2} & 0 & c_{2} \\
0 & -1 & 0
\end{array}\right], \vec{r}_{12}^{1}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
C_{3}^{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right] \vec{r}_{23}^{2}=\left[\begin{array}{l}
0 \\
0 \\
d_{3}
\end{array}\right]
\end{gathered}
$$

Note the notation $c_{1}=\cos \left(\theta_{1}\right)$ and $s_{1}=\sin \left(\theta_{1}\right)$.
(b) Determine the rotation matrix C_{3}^{0}.
(c) Determine the translation vector \vec{r}_{03}^{0}.
(d) Determine the following angular velocities as skew-symmetric matrices Ω and vectors $\vec{\omega}$. Note θ_{1}, θ_{2} and d_{3} can vary with time.
i. $\Omega_{01}^{0}, \vec{\omega}_{01}^{0}$
ii. $\Omega_{12}^{1}, \vec{\omega}_{12}^{1}$
iii. $\Omega_{23}^{2}, \vec{\omega}_{23}^{2}$
iv. $\Omega_{03}^{0}, \vec{\omega}_{03}^{0}$
3. Consider the time-varying coordinate transformation matrix C_{b}^{n} given below that describes the orientation of the body frame as it rotates with respect to the navigation frame.

$$
C_{b}^{n}=\left[\begin{array}{ccc}
\cos (t) & \sin (t) \sin \left(t^{2}\right) & \sin (t) \cos \left(t^{2}\right) \\
0 & \cos \left(t^{2}\right) & -\sin \left(t^{2}\right) \\
-\sin (t) & \cos (t) \sin \left(t^{2}\right) & \cos (t) \cos \left(t^{2}\right)
\end{array}\right]
$$

(a) Determine the analytic form of the time-derivative of C_{b}^{n} (i.e., $\dot{C}_{b}^{n}=\frac{d C_{b}^{n}}{d t}$) via a term-by-term differentiation.
(b) Develop MATLAB functions which accept " t " (i.e., time) as a numerical input and return C_{b}^{n} and \dot{C}_{b}^{n}, respectively, as numerical outputs.
(c) Using the C_{b}^{n} and \dot{C}_{b}^{n} functions from above, compute the angular velocity vector $\vec{\omega}_{n b}^{n}$ at time $t=0 \sec$ (Hint: you might want to compute $\Omega_{n b}^{n}$ first).
i. What is the magnitude (i.e., $\dot{\theta}$, angular speed) of the angular velocity?
ii. About what unit vector $\left(\vec{k}_{n b}^{n}\right)$ has the instantaneous rotation occurred?
(d) Using the C_{b}^{n} and \dot{C}_{b}^{n} functions from above, compute the angular velocity vector $\vec{\omega}_{n b}^{n}$ at time $t=0.5 \mathrm{sec}$.
i. What is the magnitude (i.e., $\dot{\theta}$, angular speed) of the angular velocity?
ii. About what unit vector $\left(\vec{k}_{n b}^{n}\right)$ has the instantaneous rotation occurred?
(e) Using C_{b}^{n} and \dot{C}_{b}^{n} functions from above, compute the angular velocity vector $\vec{\omega}_{n b}^{n}$ at time $t=1 \mathrm{sec}$.
i. What is the magnitude (i.e., $\dot{\theta}$, angular speed) of the angular velocity?
ii. About what unit vector $\left(\vec{k}_{n b}^{n}\right)$ has the instantaneous rotation occurred?
(f) In practice, direct measurement of the angular velocity vector $\vec{\omega}_{n b}^{n}$ can prove challenging, so a finite-difference approach may be taken given two sequential orientations represented by $C_{b}^{n}(t)$ and $C_{b}^{n}(t+\Delta t)$ a small time Δt apart. Consider the approximate value of the angular velocity vector $\vec{\omega}_{n b}^{n}$ derived by using the finite difference

$$
\dot{C}_{b}^{n}(t) \approx \frac{C_{b}^{n}(t+\Delta t)-C_{b}^{n}(t)}{\Delta t}
$$

at times $t=0,0.5$, and 1 sec . Compare the "analytic" values for $\dot{\theta}$ and $\vec{k}_{n b}^{n}$ (found in parts b, c and d) with your approximations from the finite difference using $\Delta t=0.1 \mathrm{sec}$. How large are the errors?
(g) How small does the sampling time (i.e., Δt) need to be to get a "good" (better than 99.9%) approximation of the angular speed (i.e., $\dot{\theta}$)?

