1. Given orientation of the b-frame wrt the n-frame in terms of relative yaw (ψ), pitch (θ), then roll (ϕ) angles

$$
\begin{align*}
C_{b}^{n} & =R_{(\vec{z}, \psi)} R_{(\vec{y}, \theta)} R_{(\vec{x}, \phi)}=\left[\begin{array}{ccc}
c_{\psi} & -s_{\psi} & 0 \\
s_{\psi} & c_{\psi} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
c_{\theta} & 0 & s_{\theta} \\
0 & 1 & 0 \\
-s_{\theta} & 0 & c_{\theta}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{\phi} & -s_{\phi} \\
0 & s_{\phi} & c_{\phi}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
c_{\theta} c_{\psi} & c_{\psi} s_{\theta} s_{\phi}-c_{\phi} s_{\psi} & c_{\phi} c_{\psi} s_{\theta}+s_{\phi} s_{\psi} \\
c_{\theta} s_{\psi} & c_{\phi} c_{\psi}+s_{\theta} s_{\phi} s_{\psi} & c_{\phi} s_{\theta} s_{\psi}-c_{\psi} s_{\phi} \\
-s_{\theta} & c_{\theta} s_{\phi} & c_{\theta} c_{\phi}
\end{array}\right] \tag{1}
\end{align*}
$$

(a) Write a MATLAB function dcm2angles to extract ψ, θ, and ϕ from a DCM
(b) Write a MATLAB function q2angles to extract ψ, θ, and ϕ from a quaternion
2. Consider the time-varying coordinate transformation matrix C_{b}^{n} given below that describes the orientation of the body frame as it rotates with respect to the navigation frame.

$$
C_{b}^{n}=\left[\begin{array}{ccc}
\cos (t) & \sin (t) \sin \left(t^{2}\right) & \sin (t) \cos \left(t^{2}\right) \tag{2}\\
0 & \cos \left(t^{2}\right) & -\sin \left(t^{2}\right) \\
-\sin (t) & \cos (t) \sin \left(t^{2}\right) & \cos (t) \cos \left(t^{2}\right)
\end{array}\right]
$$

(a) Compute an expression for ψ, θ, and ϕ as defined in Equation(1)
(b) Write MATLAB code to plot ψ, θ, and ϕ
(c) Compute ψ, θ, and ϕ by using your dcm2angles function
(d) Compute ψ, θ, and ϕ by using your q2angles function
(e) Plot results from (c) and (d), and compare them to your ground truth from (b)
3. We can iteratively update the attitude using

$$
\begin{equation*}
\overline{\boldsymbol{q}}_{b}^{n}(+)=\overline{\boldsymbol{q}}_{b}^{n}(-) \otimes \Delta \overline{\boldsymbol{q}}_{b(k)}^{b(k-1)} \tag{3}
\end{equation*}
$$

where $\vec{\omega}_{n b}^{b} \Delta t=\vec{k} \Delta \theta$ and

$$
\Delta \overline{\boldsymbol{q}}_{b(k)}^{b(k-1)}=\left[\begin{array}{c}
\cos \left(\frac{\Delta \theta}{2}\right) \\
\vec{k} \sin \left(\frac{\Delta \theta}{2}\right)
\end{array}\right]
$$

Derive a quaternion update equation using $\vec{\omega}_{n b}^{n}$.
4. Using the DCM in Equation(2) at time $t=0$ as your initial attitude, assume a $\delta t=0.0005$
(a) write MATLAB code to update your attitude over time using
i. first order approximation of derivatives
ii. quaternions
(b) compare your results with ground truth, e.g., compute and plot the error in roll, pitch and yaw angles
(c) what is the impact of δt on your results?

