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Objective

Sequentially estimate on-line the states of a system as it changes
over time using observations that are corrupted with noise.

Filtering: the time of the estimate coincides with the last
measurement.
Smoothing: the time of the estimate is within the span of the
measurements.
Prediction: the time of the estimate occurs after the last available
measurement.
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Example: random constant

Estimate the value of a random constant. How many points do you
need?
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The best estimate is the mean.
Variance of the estimate decreases as 1/N.
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Remarks and Questions

For a stationary process that represents a random constant,
averaging over more points results in an improved estimate.
What will happen if the same is applied to a non-constant?
If we have a measurement corrupted with noise, can we use the
statistical properties of the noise, and compute an estimate that
maximizes the probability that this measurement actually
occurred?
For real-time applications, can we solve the estimation problem
recursively?
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Given State-Space Equations

~xk = fk(~xk−1, ~wk−1) (1)

~zk = hk(~xk , ~vk) (2)

The state process is Markov chain, i.e.,
p(~xk |~x1, . . . , ~xk−1) = p(~xk |~xk−1) and the distribution of ~zk conditional
on the state ~xk is independent of previous state and measurement
values, i.e., p(~zk |~x1:k , ~z1:k−1) = p(~zk |~xk)
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~xk = fk(~xk−1, ~wk−1) (1)

(n × 1) state vector at time k

~zk = hk(~xk , ~vk) (2)

(m × 1) measurement vector at time k
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Given State-Space Equations

~xk = fk(~xk−1, ~wk−1) (1)

Possibly non-linear function,
fk : Rn ×Rnw 7→ Rn

~zk = hk(~xk , ~vk) (2)

Possibly non-linear function,
hk : Rm ×Rnv 7→ Rm

The state process is Markov chain, i.e.,
p(~xk |~x1, . . . , ~xk−1) = p(~xk |~xk−1) and the distribution of ~zk conditional
on the state ~xk is independent of previous state and measurement
values, i.e., p(~zk |~x1:k , ~z1:k−1) = p(~zk |~xk)
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Given State-Space Equations

~xk = fk(~xk−1, ~wk−1) (1)

i.i.d state noise

~zk = hk(~xk , ~vk) (2)

i.i.d measurement noise

The state process is Markov chain, i.e.,
p(~xk |~x1, . . . , ~xk−1) = p(~xk |~xk−1) and the distribution of ~zk conditional
on the state ~xk is independent of previous state and measurement
values, i.e., p(~zk |~x1:k , ~z1:k−1) = p(~zk |~xk)
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Objective

Probabilistically estimate ~xk using previous measurement ~z1:k . In
other words, construct the pdf p(~xk |~z1:k).

Optimal MMSE Estimate

E{‖~xk − ~̂xk‖2|~z1:k} =

∫
‖~xk − ~̂xk‖2p(~xk |~z1:k)d~xk (3)

in other words find the conditional mean

~̂xk = E{~xk |~z1:k} =

∫
~xkp(~xk |~z1:k)d~xk (4)
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Assumptions

~wk and ~vk are drawn from a Gaussian distribution, uncorrelated
have zero mean and statistically independent.

E{ ~wk ~wT
i } =

{
Qk i = k

0 i 6= k
(5)

E{ ~vk~vT
i } =

{
Rk i = k

0 i 6= k
(6)

E{ ~wk~vT
i } =

{
0 ∀i , k (7)
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Assumptions

fk and hk are both linear, e.g., the state-space system equations
may be written as

~xk = Φk−1 ~xk−1 + ~wk−1 (8)

~yk = Hk ~xk + ~vk (9)
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Assumptions

fk and hk are both linear, e.g., the state-space system equations
may be written as

~xk = Φk−1 ~xk−1 + ~wk−1 (8)

~yk = Hk ~xk + ~vk (9)

(n × n) transition matrix relating ~xk−1 to ~xk
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Assumptions

fk and hk are both linear, e.g., the state-space system equations
may be written as

~xk = Φk−1 ~xk−1 + ~wk−1 (8)

~yk = Hk ~xk + ~vk (9)

(m × n) matrix provides noiseless connection between
measurement and state vectors
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State-Space Equations

~̂xk|k−1 = Φk−1~̂xk−1|k−1 (10)

Pk|k−1 = Qk−1 + Φk−1Pk−1|k−1Φ
T
k−1 (11)

~̂xk|k = ~̂xk|k−1 + Kk (~zk − Hk~̂xk|k−1) (12)

Pk|k = (I− KkHk)Pk|k−1 (13)
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State-Space Equations

~̂xk|k−1 = Φk−1~̂xk−1|k−1 (10)

Pk|k−1 = Qk−1 + Φk−1Pk−1|k−1Φ
T
k−1 (11)

~̂xk|k = ~̂xk|k−1 + Kk (~zk − Hk~̂xk|k−1) (12)

Pk|k = (I− KkHk)Pk|k−1 (13)

(n ×m) Kalman gain
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State-Space Equations

~̂xk|k−1 = Φk−1~̂xk−1|k−1 (10)

Pk|k−1 = Qk−1 + Φk−1Pk−1|k−1Φ
T
k−1 (11)

~̂xk|k = ~̂xk|k−1 + Kk (~zk − Hk~̂xk|k−1) (12)

Pk|k = (I− KkHk)Pk|k−1 (13)

Measurement innovation
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Kalman Gain

Kk = Pk|k−1H
T
k ( HkPk|k−1HT

k + Rk )−1 (14)
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Kalman Gain

Kk = Pk|k−1H
T
k ( HkPk|k−1HT

k + Rk )−1 (14)

Covariance of the innovation term
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Kalman filter data flow

Initial estimate (~̂x0 and P0)
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Kalman filter data flow

Initial estimate (~̂x0 and P0)

Compute Kalman gain
Kk = Pk|k−1HT

k (HkPk|k−1HT
k + Rk )

−1
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Kalman filter data flow

Initial estimate (~̂x0 and P0)

Compute Kalman gain
Kk = Pk|k−1HT

k (HkPk|k−1HT
k + Rk )

−1

Update estimate with measurement ~zk
~̂xk|k = ~̂xk|k−1 + Kk (~zk − Hk~̂xk|k−1)
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Kalman filter data flow

Initial estimate (~̂x0 and P0)

Compute Kalman gain
Kk = Pk|k−1HT

k (HkPk|k−1HT
k + Rk )

−1

Update estimate with measurement ~zk
~̂xk|k = ~̂xk|k−1 + Kk (~zk − Hk~̂xk|k−1)

Update error covariance
Pk|k = Pk|k−1 − KkHkPk|k−1
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Kalman filter data flow

Initial estimate (~̂x0 and P0)

Compute Kalman gain
Kk = Pk|k−1HT

k (HkPk|k−1HT
k + Rk )

−1

Update estimate with measurement ~zk
~̂xk|k = ~̂xk|k−1 + Kk (~zk − Hk~̂xk|k−1)

Update error covariance
Pk|k = Pk|k−1 − KkHkPk|k−1

Project ahead
~̂xk|k−1 = Φk−1~̂xk−1|k−1

Pk|k−1 = Qk−1 + Φk−1Pk−1|k−1Φ
T
k−1

k = k + 1
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System Model

~̇x(t) = F(t)~x(t) + G(t)~w(t) (15)

To obtain the state vector estimate ~̂x(t)

E{~̇x(t)} =
∂

∂t
~̂x(t) = F(t)~̂x(t) (16)

Solving the above equation over the interval t − τs , t

~̂x(t) = e(
∫ t
t−τs F(t′)dt′)~̂x(t − τs) (17)

where Fk−1 is the average of F at times t and t − τs .
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System Model Discretization

As shown in the Kalman filter equations the state vector estimate is
given by

~̂xk|k−1 = Φk−1~̂xk−1|k−1

Therefore,

Φk−1 = eFk−1τs ≈ I + Fk−1τs (18)

where Fk−1 is the average of F at times t and t − τs , and first order
approximation is used.
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Discrete Covariance Matrix Qk

Assuming white noise, small time step, G is constant over the
integration period, and the trapezoidal integration

Qk−1 ≈
1
2

[
Φk−1Gk−1Q(tk−1)GT

k−1Φ
T
k−1 + Gk−1Q(tk−1)GT

k−1

]
τs (19)

where
E{~w(η)~wT (ζ)} = Q(η)δ(η − ζ) (20)
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Example: random constant

ẋ(t) = 0, yk = xk + vk

Design a Kalman filter to estimate xk

What is the
discretized
system?
What is φ, Q , H ,
R and P? 0
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Example: first order Markov noise

State Equation

ḃ(t) = − 1
Tc

b(t) + w(t) (21)

Autocorrelation Function

E{b(t)b(t + τ)} = σ2
BI e
−|τ |/Tc (22)

where
E{w(t)w(t + τ)} = Q(t)δ(t − τ) (23)

Q(t) =
2σ2

BI

Tc
(24)

and Tc is the correlation time.

Problem Bayesian Estimation Kalman Filter Example EKF Other Solutions References
Aly El-Osery, Kevin Wedeward (NMT) EE 570: Location and Navigation April 6, 2016 16 / 28



Discrete First Order Markov Noise

State Equation

bk = e−
1
Tc
τsbk−1 + wk−1 (25)

System Covariance Matrix

Q = σ2
BI [1− e−

2
Tc
τs ] (26)
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Autocorrelation of 1st order Markov

τ

Rb(τ) = σ2
BI e
−|τ |/Tc

σ2

e

σ2
BI

Tc

Problem Bayesian Estimation Kalman Filter Example EKF Other Solutions References
Aly El-Osery, Kevin Wedeward (NMT) EE 570: Location and Navigation April 6, 2016 18 / 28



Small Correlation Time Tc = 0.01
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Larger Correlation Time Tc = 0.1
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Linearized System

Fk =
∂f(~x)

∂~x

∣∣∣∣
~x=~̂xk|k−1

, Hk =
∂h(~x)

∂~x

∣∣∣∣
~x=~̂xk|k−1

(27)

where

∂f(~x)

∂~x
=


∂f1
∂x1

∂f1
∂x2

· · ·
∂f2
∂x1

∂f2
∂x2

· · ·
... . . . ...

 ,
∂h(~x)

∂~x
=


∂h1
∂x1

∂h1
∂x2

· · ·
∂h2
∂x1

∂h2
∂x2

· · ·
... . . . ...

 (28)
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Sequential Processing

If R is a block matrix, i.e., R = diag(R1,R2, . . . ,R r ). The R i has
dimensions pi × pi . Then, we can sequentially process the
measurements as:
For i = 1, 2, . . . , r

Ki = Pi−1(Hi )T (HiPi−1(Hi )T + Ri )−1 (29)

~̂x i
k|k = ~̂x i

k|k + Ki (~z i
k − Hi~̂x i−1

k|k ) (30)

Pi = (I− KiHi )Pi−1 (31)

where ~̂x0
k|k = ~̂xk|k−1, P0 = P0

k|k−1 and Hi is pi × n corresponding to the
rows of H corresponding the measurement being processed.
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Observability

The system is observable if the observability matrix

O(k) =


H(k − n + 1)

H(k − n − 2)Φ(k − n + 1)
...

H(k)Φ(k − 1) . . .Φ(k − n + 1)

 (32)

where n is the number of states, has a rank of n. The rank of O is a
binary indicator and does not provide a measure of how close the
system is to being unobservable, hence, is prone to numerical
ill-conditioning.

Problem Bayesian Estimation Kalman Filter Example EKF Other Solutions References
Aly El-Osery, Kevin Wedeward (NMT) EE 570: Location and Navigation April 6, 2016 23 / 28



A Better Observability Measure

In addition to the computation of the rank of O(k), compute the
Singular Value Decomposition (SVD) of O(k) as

O = UΣV ∗ (33)

and observe the diagonal values of the matrix Σ. Using this approach
it is possible to monitor the variations in the system observability due
to changes in system dynamics.
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Remarks

Kalman filter is optimal under the aforementioned assumptions,
and it is also an unbiased and minimum variance estimate.
If the Gaussian assumptions is not true, Kalman filter is biased
and not minimum variance.
Observability is dynamics dependent.
The error covariance update may be implemented using the
Joseph form which provides a more stable solution due to the
guaranteed symmetry.

Pk|k = (I −K kHk) Pk|k−1 (I −K kHk)T + K kRkKT
k (34)
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Unscented Kalman Filter (UKF)

Propagates carefully chosen sample points (using unscented
transformation) through the true non-linear system, and therefore
captures the posterior mean and covariance accurately to the second
order.
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Particle Filter

A Monte Carlo based method. It allows for a complete representation
of the state distribution function. Unlike EKF and UKF, particle filters
do not require the Gaussian assumptions.
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Bayesian Filtering: From Kalman Filters to Particle Filters, and
Beyond, by Zhe Chen
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