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Sequentially estimate on-line the states of a system as it changes
over time using observations that are corrupted with noise.

o Filtering: the time of the estimate coincides with the last
measurement.

@ Smoothing: the time of the estimate is within the span of the
measurements.

@ Prediction: the time of the estimate occurs after the last available
measurement.
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Estimate the value of a random constant. How many points do you
need?
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Estimate the value of a random constant. How many points do you
need?
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@ The best estimate is the mean.
@ Variance of the estimate decreases as 1/N.
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o For a stationary process that represents a random constant,
averaging over more points results in an improved estimate.

o What will happen if the same is applied to a non-constant?

o If we have a measurement corrupted with noise, can we use the
statistical properties of the noise, and compute an estimate that
maximizes the probability that this measurement actually
occurred?

o For real-time applications, can we solve the estimation problem
recursively?
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Problem
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(n x 1) state vector at time k

= fi(Xk—1, Wi_1) (1

(m x 1) measurement vector at time k

Problem
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Possibly non-linear function,
fi 1 R x R™ — R"
Xk—1, W—1) (1)

Possibly non-linear function,
he : R™ x R™ = RM

Problem
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i...d state noise

i...d measurement noise

Problem
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Z = hi(Xk, Vi) (2)

The state process is Markov chain, i.e.,
p(Xk|X1,...,Xk—1) = p(Xk|Xk—1) and the distribution of Z; conditional

on the state Xy is independent of previous state and measurement
values, ie., p(Zk|X1.k, Z1:k—1) = p(Zk|Xk)

Problem
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Probabilistically estimate X, using previous measurement Zq.x. In
other words, construct the pdf p(Xx|Z1.4)-

Problem
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Probabilistically estimate X, using previous measurement Zq.x. In
other words, construct the pdf p(Xx|Z1.4)-

Optimal MMSE Estimate

E{|% — %2204} = / 1% = Rl PP (Rel Z1:4) IR 3)

in other words find the conditional mean

%k = E{Ze|Z14) = / e B )

Problem
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@ w, and v are drawn from a Gaussian distribution, uncorrelated
have zero mean and statistically independent.

Qu i=k

EWi@ 3 =107 Ly )
BTy =k )
E{ *kv,T}:{o Vi, k (7)

Kalman Filter
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e fx and hy are both linear, e.g., the state-space system equations
may be written as

X = ®p_1 Xp—1+ Wg_1 (8)

k= Hi X + Vi 9)

<

Kalman Filter
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e fx and hy are both linear, e.g., the state-space system equations
may be written as

Y= Hi X + Vi 9)

(n X n) transition matrix relating X, _1 to Xy

Kalman Filter
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e fx and hy are both linear, e.g., the state-space system equations
may be written as

X = ®p_1 Xp—1+ Wg_1 (8)

K= K+ Vi 9)

<

(m x n) matrix provides noiseless connection between
measurement and state vectors

Kalman Filter
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’%k\kq = ‘I’kfl)%kfukfl (10)
Prk-1 = Que1 + ®ro1Prou1®]_4 (11)
Xk = X1 + Kie (Zk — HiXppe1) (12)
Puk = (I = KkH)Prji—1 (13)

Kalman Filter
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X

klk—1 = Pk—1Xk_1jk—1 (10)

Prik—1 = Qk-1+ 'i’k—lpk—l\k—lq)lz—_l (11)

Kalman Filter
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’%k\kq = ‘I’kfl)%kfukfl (10)
Prik—1 = Qk-1+ 'i’k—lpk—l\k—lq)lz—_l (11)
Xulk = Xifk—1 + Kk (12)
Pijk = (I = KeHi)P i) (13)

Measurement innovation

Kalman Filter
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Kie = Prik—tHi ( HePruotHY + R )™ (14)

Kalman Filter
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Kk = Prx—1H{ ( @ )! (14)

Covariance of the innovation term

Kalman Filter

EE 570 1 and



NEW MEXICO TECH

SCIENCE  ENGINEERING « RESEARCH UNIVERSITY

Initial estimate ():(,o and Po)
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Initial estimate ():(,o and Po)

!

Compute Kalman gain
T T -
Ki = Pypk—1H{ (HiPy—aHY + R
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Initial estimate ():(,o and Po)

!

Compute Kalman gain
T T -
Ki = Pypk—1H{ (HiPy—aHY + R

Upclate estimate with measurement Z)
Xik = Xkjk—1 + Ki(Zk — Hikh—1)
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Initial estimate ():(,o and Po)

!

Compute Kalman gain
T T -
Ki = Pypk—1H{ (HiPy—aHY + R

Upclate estimate with measurement Z)
Xik = Xkjk—1 + Ki(Zk — Hikh—1)

Update error covariance
Prik = Prik—1 — KkHgPype g
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Initial estimate ():(,o and Po)

!

Compute Kalman gain
T T -
Ki = Pypk—1H{ (HiPy—aHY + R

Project ahead
Upclate estimate with measurement Z)

Xijk—1 = Ph_1Xk_1jk—1
l ! Xik = Xkjk—1 + Ki(Zk — Hikh—1)

.
Puk—1 = Qu—1+ Pr—1Pr_1jk—1P4_4

k=k+1

Update error covariance
Prik = Prik—1 — KkHgPype g
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Initial estimate ():(,o and Po)

!

Compute Kalman gain
T T -
Ki = Pypk—1H{ (HiPy—aHY + R

Project ahead
Upclate estimate with measurement Z)

Xijk—1 = Ph_1Xk_1jk—1
l ! Xik = Xkjk—1 + Ki(Zk — Hikh—1)

.
Puk—1 = Qu—1+ Pr—1Pr_1jk—1P4_4

k=k+1

Update error covariance
Prik = Prik—1 — KkHgPype g
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X(t) = F(£)X(t) + G(t)w(t) (15)
To obtain the state vector estimate X(t)
E{*(1)) = S %(1) = FOX() (16)

Solving the above equation over the interval t — 7, t
A t / AR
2(t) = elfn FEN) 20 )y (17)

where Fi_1 is the average of F at times t and t — 7s.

Kalman Filter
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As shown in the Kalman filter equations the state vector estimate is
given by

Xik—1 = Pr—1Xk_1jk—1
Therefore,

Kalman Filter
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As shown in the Kalman filter equations the state vector estimate is
given by

Xik—1 = Pr—1Xk_1jk—1
Therefore,

D1 =e 1" |+ Fr_q7s (18)

where Fy_; is the average of F at times t and t — 75, and first order
approximation is used.

Kalman Filter
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Assuming white noise, small time step, G is constant over the
integration period, and the trapezoidal integration

Qu-1 ~ [‘I’k—1Gk—1Q(tk—1)GkT_1‘I’kT_1 + Gk—1Q(fk—1)GkT_1] 7s  (19)

1
2

where

E{w(n)w’(¢)} = Qn)d(n— ) (20)

Kalman Filter
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x(t) =0, Yk = Xk + vk

Design a Kalman filter to estimate xx

Example
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x(t) =0, Yk = Xk + vk

Design a Kalman filter to estimate xx

@ What is the
discretized
system?

o What is ¢, Q, H,
R and P?

Example
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x(t) =0, Yk = Xk + vk

Design a Kalman filter to estimate xx

e What is the . B - f4'\1ﬁ ) \ li”JL
discretized s ! TI']WA'\;F 'V—_\I“-JLT ﬁ"'ﬁ\/:\rj,y:‘\

system? o / P N
e What is ¢, Q, H, fi R
R and P? o L 1o v [ o

0 50 100 150 200 250 300
iteration
measurement - iir filter
actual —S— Kalman filter

fir filter =

Example
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Autocorrelation Function

E{b(t)b(t +7)} = o3e” 1T/ Te (22)

where
E{w(t)w(t+ 1)} = Q(t)o(t — 7) (23)
Q) = 27 (24)

and T, is the correlation time.

Example
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State Equation

by = e Te"by 1 + wi_1 (25)
System Covariance Matrix
Q=offl—e 77 (26)

Example
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Example
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Example
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0 0.2 0.4 0.6 0.8 1

Time (sec)

—— Measured Actual —— Estimated

Example
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Rn(7)

Example
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Fyp =
where
ofi
o Ox1
HX) _ | on

OxX Ox1

of
Ox2

ofh

Oxo

oh(X)
Hy =
as KT ox
Xk|k—1
o
. x1
oh(X) Ohy
’ ox | o

EKF

Xk|k—1

Ohy
Oxo

Oha
Ox2

(27)

(28)
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If R is a block matrix, i.e., R = diag(R',R?,...,R"). The R’ has
dimensions p’ x p’. Then, we can sequentially process the
measurements as:

Fori=1,2,....r

Ki — Pifl(Hi)T(HiPifl(Hf)T + Ri)fl (29)
Xigye = )%;M + K"(z —HX}) (30)
= (I-K'H)P (31)

a0 % 0 _ po iie ni - :
where Xik = Xkk—1 PY = Pk|k_1 and H' is p’' X n corresponding to the
rows of H corresponding the measurement being processed.

EKF
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The system is observable if the observability matrix

H(k—n+1)
(k) = H(k —n— 2):<I>(k —n+1) 32)

HK)®(k —1)...B(k — n+ 1)

where n is the number of states, has a rank of n. The rank of O is a
binary indicator and does not provide a measure of how close the
system is to being unobservable, hence, is prone to numerical
ill-conditioning.

EKF

(NMT) EE 570: Location and Navigation



A Better Observability Measure NEW MEXICO TECH

SCIENCE  ENGINEERING « RESEARCH UNIVERSITY

In addition to the computation of the rank of O(k), compute the
Singular Value Decomposition (SVD) of O(k) as

O = UsV* (33)

and observe the diagonal values of the matrix ¥. Using this approach
it is possible to monitor the variations in the system observability due
to changes in system dynamics.

EKF
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o Kalman filter is optimal under the aforementioned assumptions,
@ and it is also an unbiased and minimum variance estimate.

o If the Gaussian assumptions is not true, Kalman filter is biased
and not minimum variance.

@ Observability is dynamics dependent.

@ The error covariance update may be implemented using the
Joseph form which provides a more stable solution due to the
guaranteed symmetry.

Pk = (I — KikHi) Pige—1 (1 — KkH) T + KiReK ] (34)
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Propagates carefully chosen sample points (using unscented
transformation) through the true non-linear system, and therefore
captures the posterior mean and covariance accurately to the seconc

order.

Other Solutions
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A Monte Carlo based method. It allows for a complete representation
of the state distribution function. Unlike EKF and UKF, particle filters
do not require the Gaussian assumptions.

Other Solutions
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Bayesian Filtering: From Kalman Filters to Particle Filters, and
Beyond, by Zhe Chen
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