EE 570: Location and Navigation On-Line Bayesian Tracking

Aly El-Osery Kevin Wedeward

Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA

In Collaboration with Stephen Bruder Electrical and Computer Engineering Department Embry-Riddle Aeronautical Univesity Prescott, Arizona, USA

April 6, 2016

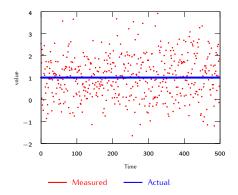
Aly El-Osery,	Kevin Wedeward (NMT)	EE 570: Locat	ion and Navigati	ion	April 6,	2016	1 / 28

Sequentially estimate on-line the states of a system as it changes over time using observations that are corrupted with noise.

- *Filtering*: the time of the estimate coincides with the last measurement.
- *Smoothing*: the time of the estimate is within the span of the measurements.
- *Prediction*: the time of the estimate occurs after the last available measurement.

Example: random constant

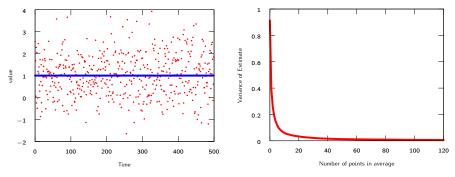
Estimate the value of a random constant. How many points do you need?



Aly El-Osery, Kevin Wedeward (NMT)		EE 570: Locat	ion and Navigati	ion	April 6,	2016	3 / 28

Example: random constant

Estimate the value of a random constant. How many points do you need?



- ---- Measured ---- Actual
- The best estimate is the mean.
- Variance of the estimate decreases as 1/N.

Problem	Bayesian Estimation	Kalman Filter	Example	EKF	Other Solutions	Refe	rences
Aly El-Osery	, Kevin Wedeward (NMT)	EE 570: Locati	on and Navigati	.on	April 6,	2016	3 / 28

- For a stationary process that represents a random constant, averaging over more points results in an improved estimate.
- What will happen if the same is applied to a non-constant?
- If we have a measurement corrupted with noise, can we use the statistical properties of the noise, and compute an estimate that maximizes the probability that this measurement actually occurred?
- For real-time applications, can we solve the estimation problem recursively?

$$\vec{\boldsymbol{x}}_{k} = f_{k}(\vec{\boldsymbol{x}}_{k-1}, \vec{\boldsymbol{w}}_{k-1})$$
(1)

$$\vec{\boldsymbol{z}}_k = \boldsymbol{\mathsf{h}}_k(\vec{\boldsymbol{x}}_k, \vec{\boldsymbol{v}}_k) \tag{2}$$

Problem							
Aly El-Osery,	, Kevin Wedeward (NMT)	EE 570: Loca	tion and Navigat	ion	April 6,	2016	5 / 28

 $(n \times 1)$ state vector at time k

$$\overrightarrow{\boldsymbol{x}}_{k} = f_{k}(\overrightarrow{\boldsymbol{x}}_{k-1}, \overrightarrow{\boldsymbol{w}}_{k-1})$$
(1)

$$(\vec{z}_k) = h_k(\vec{x}_k, \vec{v}_k)$$
(2)

 $(m \times 1)$ measurement vector at time k

Problem							
Aly El-Osery,	, Kevin Wedeward (NMT)	EE 570: Locat	ion and Navigati	ion	April 6,	2016	5 / 28

Given State-Space Equations

Possibly non-linear function,

$$f_{k}: \mathfrak{R}^{n} \times \mathfrak{R}^{n_{w}} \mapsto \mathfrak{R}^{n}$$

$$\vec{x}_{k} = (f_{k})\vec{x}_{k-1}, \vec{w}_{k-1})$$
(1)

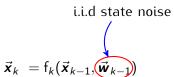
$$\vec{\boldsymbol{z}}_{k} = \underbrace{\boldsymbol{h}_{k}}_{k}(\vec{\boldsymbol{x}}_{k}, \vec{\boldsymbol{v}}_{k})$$
Possibly non-linear function,
$$\boldsymbol{h}_{k}: \mathfrak{R}^{m} \times \mathfrak{R}^{n_{v}} \mapsto \mathfrak{R}^{m}$$
(2)

Problem							
Aly El-Osery	, Kevin Wedeward (NMT)	EE 570: Locat	ion and Navigati	ion	April 6,	2016	5 / 28

Given State-Space Equations

(1)

(2)



$$\vec{z}_k = \mathsf{h}_k(\vec{x}_k, \vec{v}_k)$$

i.i.d measurement noise

Problem	Bayesian Estimation	Kalman Filter	Example	EKF	Other Solutions	Refe	erences
Aly El-Osery	Kevin Wedeward (NMT)	EE 570: Locat	tion and Navigat	ion	April 6,	2016	5 / 28

$$\vec{\boldsymbol{x}}_{k} = \boldsymbol{\mathsf{f}}_{k}(\vec{\boldsymbol{x}}_{k-1}, \vec{\boldsymbol{w}}_{k-1}) \tag{1}$$

$$\vec{\boldsymbol{z}}_k = \boldsymbol{\mathsf{h}}_k(\vec{\boldsymbol{x}}_k, \vec{\boldsymbol{v}}_k)$$
 (2)

The state process is Markov chain, i.e., $p(\vec{x}_k | \vec{x}_1, ..., \vec{x}_{k-1}) = p(\vec{x}_k | \vec{x}_{k-1})$ and the distribution of \vec{z}_k conditional on the state \vec{x}_k is independent of previous state and measurement values, i.e., $p(\vec{z}_k | \vec{x}_{1:k}, \vec{z}_{1:k-1}) = p(\vec{z}_k | \vec{x}_k)$

Probabilistically estimate \vec{x}_k using previous measurement $\vec{z}_{1:k}$. In other words, construct the pdf $p(\vec{x}_k | \vec{z}_{1:k})$.

Problem							
Aly El-Osery	, Kevin Wedeward (NMT)	EE 570: Locat	ion and Navigati	ion	April 6,	2016	6 / 28

Probabilistically estimate \vec{x}_k using previous measurement $\vec{z}_{1:k}$. In other words, construct the pdf $p(\vec{x}_k | \vec{z}_{1:k})$.

Optimal MMSE Estimate

$$\mathbb{E}\{\|\vec{x}_{k} - \hat{\vec{x}}_{k}\|^{2} | \vec{z}_{1:k}\} = \int \|\vec{x}_{k} - \hat{\vec{x}}_{k}\|^{2} \rho(\vec{x}_{k} | \vec{z}_{1:k}) d\vec{x}_{k}$$
(3)

in other words find the conditional mean

$$\hat{\vec{x}}_k = \mathbb{E}\{\vec{x}_k | \vec{z}_{1:k}\} = \int \vec{x}_k p(\vec{x}_k | \vec{z}_{1:k}) d\vec{x}_k$$
(4)

• \vec{w}_k and \vec{v}_k are drawn from a Gaussian distribution, uncorrelated have zero mean and statistically independent.

$$\mathbb{E}\{\vec{\boldsymbol{w}}_{k}\vec{\boldsymbol{w}}_{i}^{T}\} = \begin{cases} Q_{k} & i = k\\ 0 & i \neq k \end{cases}$$
(5)
$$\mathbb{E}\{\vec{\boldsymbol{v}}_{k}\vec{\boldsymbol{v}}_{i}^{T}\} = \begin{cases} \mathsf{R}_{k} & i = k\\ 0 & i \neq k \end{cases}$$
(6)
$$\mathbb{E}\{\vec{\boldsymbol{w}}_{k}\vec{\boldsymbol{v}}_{i}^{T}\} = \begin{cases} 0 & \forall i, k \end{cases}$$
(7)

		Kalman Filter					
Aly El-Osery	, Kevin Wedeward (NMT)	EE 570: Locat	ion and Navigati	ion	April 6,	2016	7 / 28

• f_k and h_k are both linear, e.g., the state-space system equations may be written as

$$\vec{\boldsymbol{x}}_{k} = \boldsymbol{\Phi}_{k-1} \, \vec{\boldsymbol{x}}_{k-1} + \vec{\boldsymbol{w}}_{k-1} \tag{8}$$

$$\vec{\boldsymbol{y}}_k = \ \mathsf{H}_k \ \vec{\boldsymbol{x}}_k + \vec{\boldsymbol{v}}_k \tag{9}$$

		Kalman Filter					
Aly El-Osery,	, Kevin Wedeward (NMT)	EE 570: Locat	ion and Navigati	ion	April 6,	2016	8 / 28

• f_k and h_k are both linear, e.g., the state-space system equations may be written as

$$\vec{\boldsymbol{x}}_{k} = \boldsymbol{\Phi}_{k-1} \quad \vec{\boldsymbol{x}}_{k-1} + \vec{\boldsymbol{w}}_{k-1} \tag{8}$$
$$\vec{\boldsymbol{y}}_{k} = \boldsymbol{H}_{k} \quad \vec{\boldsymbol{x}}_{k} + \vec{\boldsymbol{v}}_{k} \tag{9}$$

 $(n \times n)$ transition matrix relating \vec{x}_{k-1} to \vec{x}_k

		Kalman Filter					
Aly El-Osery	, Kevin Wedeward (NMT)	EE 570: Locat	ion and Navigati	.on	April 6,	2016	8 / 28

• f_k and h_k are both linear, e.g., the state-space system equations may be written as

$$\vec{\mathbf{x}}_{k} = \Phi_{k-1} \vec{\mathbf{x}}_{k-1} + \vec{\mathbf{w}}_{k-1}$$
(8)
$$\vec{\mathbf{y}}_{k} = H_{k} \vec{\mathbf{x}}_{k} + \vec{\mathbf{v}}_{k}$$
(9)

 $(m \times n)$ matrix provides noiseless connection between measurement and state vectors

		Kalman Filter					
Aly El-Osery,	, Kevin Wedeward (NMT)	EE 570: Locat	ion and Navigati	.on	April 6,	2016	8 / 28

$$\hat{\vec{x}}_{k|k-1} = \Phi_{k-1}\hat{\vec{x}}_{k-1|k-1}$$
(10)

$$\mathsf{P}_{k|k-1} = \mathsf{Q}_{k-1} + \Phi_{k-1} \mathsf{P}_{k-1|k-1} \Phi_{k-1}^{\mathsf{T}}$$
(11)

$$\hat{\vec{x}}_{k|k} = \hat{\vec{x}}_{k|k-1} + K_k (\vec{z}_k - H_k \hat{\vec{x}}_{k|k-1})$$
 (12)

$$\mathsf{P}_{k|k} = (\mathsf{I} - \mathsf{K}_k \mathsf{H}_k) \mathsf{P}_{k|k-1} \tag{13}$$

		Kalman Filter					
Aly El-Osery	, Kevin Wedeward (NMT)	EE 570: Loca	tion and Navigat	ion	April 6,	2016	9 / 28

$$\hat{\vec{x}}_{k|k-1} = \Phi_{k-1}\hat{\vec{x}}_{k-1|k-1}$$
(10)

$$\mathsf{P}_{k|k-1} = \mathsf{Q}_{k-1} + \Phi_{k-1} \mathsf{P}_{k-1|k-1} \Phi_{k-1}^{\mathsf{T}}$$
(11)

$$\hat{\vec{x}}_{k|k} = \hat{\vec{x}}_{k|k-1} + \underbrace{\mathsf{K}_k}_{k} (\vec{z}_k - \mathsf{H}_k \hat{\vec{x}}_{k|k-1})$$
(12)

$$\mathsf{P}_{k|k} = (\mathsf{I} - \mathsf{K}_k \mathsf{H}_k) \mathsf{P}_{k|k-1} \tag{13}$$

 $(n \times m)$ Kalman gain

$$\hat{\vec{x}}_{k|k-1} = \Phi_{k-1}\hat{\vec{x}}_{k-1|k-1}$$
(10)

$$\mathsf{P}_{k|k-1} = \mathsf{Q}_{k-1} + \Phi_{k-1} \mathsf{P}_{k-1|k-1} \Phi_{k-1}^{\mathsf{T}}$$
(11)

$$\hat{\vec{x}}_{k|k} = \hat{\vec{x}}_{k|k-1} + K_k \left(\vec{z}_k - H_k \hat{\vec{x}}_{k|k-1} \right)$$
(12)

$$\mathsf{P}_{k|k} = (\mathsf{I} - \mathsf{K}_k \mathsf{H}_k) \mathsf{P}_{k|k-1}$$
(13)

Measurement innovation

		Kalman Filter					
Aly El-Osery, Kevin Wedeward (NMT)		EE 570: Loca	tion and Navigat	ion	April 6,	2016	9 / 28

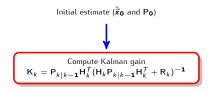
$$\mathsf{K}_{k} = \mathsf{P}_{k|k-1}\mathsf{H}_{k}^{T}(\mathsf{H}_{k}\mathsf{P}_{k|k-1}\mathsf{H}_{k}^{T} + \mathsf{R}_{k})^{-1} \tag{14}$$

		Kalman Filter					
Aly El-Osery,	Kevin Wedeward (NMT)	EE 570: Locat	tion and Navigat	ion	April 6, 2	2016 10 / 3	28

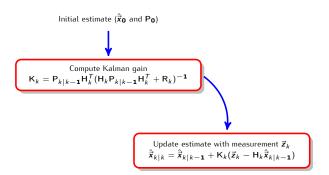
$$K_{k} = P_{k|k-1}H_{k}^{T}(H_{k}P_{k|k-1}H_{k}^{T} + R_{k})^{-1}$$
(14)
Covariance of the innovation term

Initial estimate ($\hat{\vec{x}}_0$ and P_0)

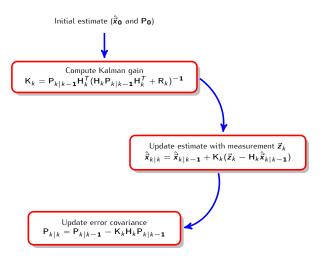
		Kalman Filter				
Aly El-Osery, Kevin Wedeward (NMT)		EE 570: Locat	tion and Navigat	ion	April 6, 2	2016 11 / 28



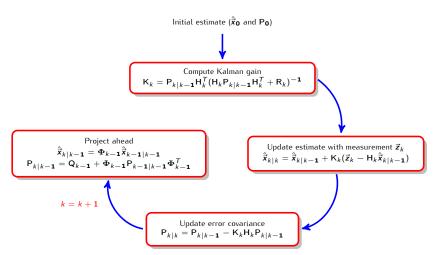
		Kalman Filter				
Aly El-Osery, Kevin Wedeward (NMT)		EE 570: Locat	ion and Navigat	ion	April 6, 2	2016 11 / 28



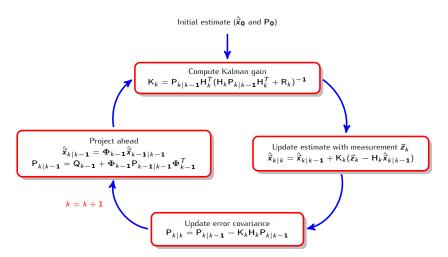
		Kalman Filter				
Aly El-Osery,	, Kevin Wedeward (NMT)	EE 570: Locat	ion and Navigat	ion	April 6, 2	2016 11 / 28



		Kalman Filter				
Aly El-Osery, Kevin Wedeward (NMT)		EE 570: Locat	ion and Navigati	.on	April 6, 2	2016 11 / 28



		Kalman Filter				
Aly El-Osery, Kevin Wedeward (NMT)		EE 570: Locat	ion and Navigat	ion	April 6, 2	2016 11 / 28



		Kalman Filter				
Aly El-Osery, Kevin Wedeward (NMT)		EE 570: Locati	ion and Navigati	ion	April 6, 2	016 11 / 28

$$\dot{\vec{x}}(t) = \mathsf{F}(t)\vec{x}(t) + \mathsf{G}(t)\vec{w}(t)$$
(15)

To obtain the state vector estimate $\hat{\vec{x}}(t)$

$$\mathbb{E}\{\dot{\vec{x}}(t)\} = \frac{\partial}{\partial t}\hat{\vec{x}}(t) = \mathsf{F}(t)\hat{\vec{x}}(t)$$
(16)

Solving the above equation over the interval $t - \tau_s, t$

$$\hat{\vec{x}}(t) = e^{\left(\int_{t-\tau_s}^t \mathsf{F}(t')dt'\right)}\hat{\vec{x}}(t-\tau_s)$$
(17)

where F_{k-1} is the average of F at times t and $t - \tau_s$.

Problem	Bayesian Estimation	Kalman Filter					
Aly El-Osery	, Kevin Wedeward (NMT)	EE 570: Locati	on and Navigati	ion	April 6, 2	016	12 / 28

As shown in the Kalman filter equations the state vector estimate is given by

$$\hat{\vec{x}}_{k|k-1} = \boldsymbol{\Phi}_{k-1}\hat{\vec{x}}_{k-1|k-1}$$

Therefore,

		Kalman Filter				
Aly El-Osery	, Kevin Wedeward (NM) EE 570: Loca	ation and Navigat	tion	April 6, 2	2016 13 / 28

As shown in the Kalman filter equations the state vector estimate is given by

$$\hat{\vec{x}}_{k|k-1} = \boldsymbol{\Phi}_{k-1}\hat{\vec{x}}_{k-1|k-1}$$

Therefore,

$$\Phi_{k-1} = e^{\mathsf{F}_{k-1}\tau_s} \approx \mathsf{I} + \mathsf{F}_{k-1}\tau_s \tag{18}$$

where F_{k-1} is the average of F at times t and $t - \tau_s$, and first order approximation is used.

Assuming white noise, small time step, ${\sf G}$ is constant over the integration period, and the trapezoidal integration

$$Q_{k-1} \approx \frac{1}{2} \left[\Phi_{k-1} G_{k-1} Q(t_{k-1}) G_{k-1}^{T} \Phi_{k-1}^{T} + G_{k-1} Q(t_{k-1}) G_{k-1}^{T} \right] \tau_{s} \quad (19)$$

where

$$\mathbb{E}\{\vec{\boldsymbol{w}}(\eta)\vec{\boldsymbol{w}}^{T}(\zeta)\} = \mathsf{Q}(\eta)\delta(\eta-\zeta)$$
(20)

		Kalman Filter				
Aly El-Osery, Kevin Wedeward (NMT)		EE 570: Locati	on and Navigati	on	April 6, 2	2016 14 / 28

$$\dot{x}(t)=0, \qquad y_k=x_k+v_k$$

Design a Kalman filter to estimate x_k

				Example				
Aly El-Osery, Kevin Wedeward (NMT)		EE 570: Location and Navigation			April 6, 2016 15 / 28			

$$\dot{x}(t)=0, \qquad y_k=x_k+v_k$$

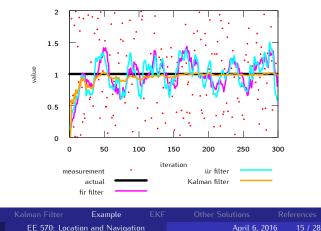
Design a Kalman filter to estimate x_k

- What is the discretized system?
- What is φ, Q, H, *R* and *P*?

			Example			
Aly El-Osery, Kevin Wedeward (NMT)		EE 570: Location and Navigation		on	April 6, 2016 15 / 2	

$$\dot{x}(t) = 0, \qquad y_k = x_k + v_k$$

Design a Kalman filter to estimate x_k



- What is the discretized system?
- What is φ, Q, H, R and P?

Aly El-Osery, Kevin Wedeward (NMT)

State Equation

$$\dot{b}(t) = -\frac{1}{T_c}b(t) + w(t)$$
 (21)

Autocorrelation Function

$$\mathbb{E}\{b(t)b(t+\tau)\} = \sigma_{BI}^2 e^{-|\tau|/T_c}$$
(22)

where

$$E\{w(t)w(t+\tau)\} = Q(t)\delta(t-\tau)$$

$$Q(t) = \frac{2\sigma_{BI}^2}{T_c}$$
(23)

and T_c is the correlation time.

			Example				
Aly El-Osery, Kevin Wedeward (NMT)		EE 570: Location and Navigation			April 6, 2016 16 / 2		

State Equation

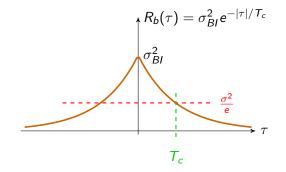
$$b_k = e^{-\frac{1}{T_c}\tau_s} b_{k-1} + w_{k-1} \tag{25}$$

System Covariance Matrix

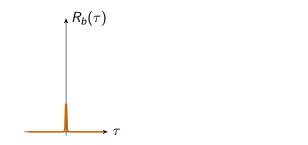
$$Q = \sigma_{BI}^2 [1 - e^{-\frac{2}{\tau_c}\tau_s}]$$
(26)

			Example				
Aly El-Osery, Kevin Wedeward (NMT)) EE 570: Loca	EE 570: Location and Navigation			April 6, 2016 17 / 28	

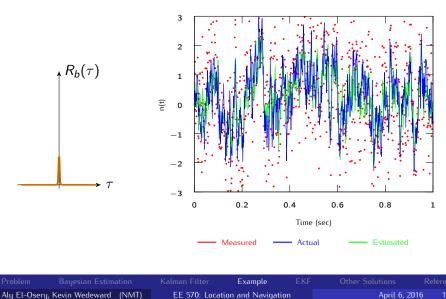
Autocorrelation of 1st order Markov



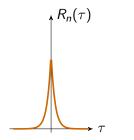
				Example				
Aly El-Osery,	, Kevin Wedeward ((NMT)	EE 570: Locat	ion and Navigati	on	April 6, 2	2016	18 / 28



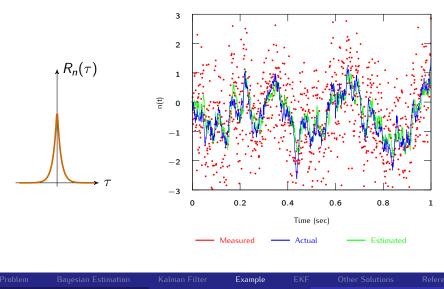
			Example			
Aly El-Osery,	Kevin Wedeward (NMT)	EE 570: Locat	ion and Navigatio	on 📃	April 6, 2	016 19 / 28



April 6, 2016 19 / 28



Problem	Bayesian Estimation	Kalman Filter	Example	EKF	Other Solutions	Re	ferences
Aly El-Osery	, Kevin Wedeward (NMT)	EE 570: Locat	ion and Navigati	ion	April 6, 2	016	20 / 28



April 6, 2016 20 / 28

Aly El-Osery, Kevin Wedeward (NMT)

eward (INMT) EE 570: Locat

EE 570: Location and Navigation

$$\mathsf{F}_{k} = \left. \frac{\partial \mathsf{f}(\vec{x})}{\partial \vec{x}} \right|_{\vec{x} = \hat{\vec{x}}_{k|k-1}},$$

$$\mathsf{H}_{k} = \left. \frac{\partial \mathsf{h}(\vec{x})}{\partial \vec{x}} \right|_{\vec{x} = \hat{\vec{x}}_{k|k-1}}$$
(27)

where

$$\frac{\partial \mathbf{f}(\vec{\mathbf{x}})}{\partial \vec{\mathbf{x}}} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots \\ \vdots & \ddots & \vdots \end{pmatrix}, \qquad \qquad \frac{\partial \mathbf{h}(\vec{\mathbf{x}})}{\partial \vec{\mathbf{x}}} = \begin{pmatrix} \frac{\partial h_1}{\partial x_1} & \frac{\partial h_1}{\partial x_2} & \cdots \\ \frac{\partial h_2}{\partial x_1} & \frac{\partial h_2}{\partial x_2} & \cdots \\ \vdots & \ddots & \vdots \end{pmatrix}$$
(28)

				EKF			
Aly El-Osery,	, Kevin Wedeward (NMT)	EE 570: Locat	ion and Navigat	ion	April 6, 2	2016	21 / 28

If *R* is a block matrix, i.e., $R = diag(R^1, R^2, ..., R^r)$. The R^i has dimensions $p^i \times p^i$. Then, we can sequentially process the measurements as:

For i = 1, 2, ..., r

$$K^{i} = P^{i-1}(H^{i})^{T}(H^{i}P^{i-1}(H^{i})^{T} + R^{i})^{-1}$$
(29)

$$\hat{\vec{x}}_{k|k}^{i} = \hat{\vec{x}}_{k|k}^{i} + \mathsf{K}^{i}(\vec{z}_{k}^{i} - \mathsf{H}^{i}\hat{\vec{x}}_{k|k}^{i-1})$$
(30)

$$\mathsf{P}^{i} = (\mathsf{I} - \mathsf{K}^{i}\mathsf{H}^{i})\mathsf{P}^{i-1} \tag{31}$$

where $\hat{\vec{x}}_{k|k}^{0} = \hat{\vec{x}}_{k|k-1}$, $P^{0} = P_{k|k-1}^{0}$ and H^{i} is $p^{i} \times n$ corresponding to the rows of H corresponding the measurement being processed.

The system is observable if the observability matrix

$$\mathcal{O}(k) = \begin{bmatrix} \mathbf{H}(k-n+1) \\ \mathbf{H}(k-n-2)\mathbf{\Phi}(k-n+1) \\ \vdots \\ \mathbf{H}(k)\mathbf{\Phi}(k-1)\dots\mathbf{\Phi}(k-n+1) \end{bmatrix}$$
(32)

where *n* is the number of states, has a rank of *n*. The rank of O is a binary indicator and does **not** provide a measure of how close the system is to being unobservable, hence, is prone to numerical ill-conditioning.

In addition to the computation of the rank of $\mathcal{O}(k)$, compute the Singular Value Decomposition (SVD) of $\mathcal{O}(k)$ as

$$\mathcal{O} = U\Sigma V^* \tag{33}$$

and observe the diagonal values of the matrix Σ . Using this approach it is possible to monitor the variations in the system observability due to changes in system dynamics.

- Kalman filter is optimal under the aforementioned assumptions,
- and it is also an unbiased and minimum variance estimate.
- If the Gaussian assumptions is not true, Kalman filter is biased and not minimum variance.
- Observability is dynamics dependent.
- The error covariance update may be implemented using the *Joseph form* which provides a more stable solution due to the guaranteed symmetry.

$$\boldsymbol{P}_{k|k} = (\boldsymbol{I} - \boldsymbol{K}_k \boldsymbol{H}_k) \boldsymbol{P}_{k|k-1} (\boldsymbol{I} - \boldsymbol{K}_k \boldsymbol{H}_k)^T + \boldsymbol{K}_k \boldsymbol{R}_k \boldsymbol{K}_k^T$$
(34)

Propagates carefully chosen sample points (using unscented transformation) through the true non-linear system, and therefore captures the posterior mean and covariance accurately to the second order.

					Other Solutions		
Aly El-Osery,	, Kevin Wedeward (NMT)	EE 570: Locat	ion and Navigati	.on	April 6, 2	016	26 / 28

A Monte Carlo based method. It allows for a complete representation of the state distribution function. Unlike EKF and UKF, particle filters do not require the Gaussian assumptions.

					Other Solutions	
Aly El-Osery	, Kevin Wedeward (NMT)	EE 570: Locati	ion and Navigati	.on	April 6, 20	016 27 / 28

Bayesian Filtering: From Kalman Filters to Particle Filters, and Beyond, by Zhe Chen

						References
Aly El-Osery,	Kevin Wedeward (NMT)	EE 570: Locat	tion and Navigati	ion	April 6, 2	2016 28 / 28