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Open-Loop Integration

Aiding Sensors

INS

Filter

Correct INS Output
True PVA + errors

True PVA + errors Aiding errors - INS errors
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Closed-Loop Integration

If error estimates are fedback to correct the INS mechanization, a
reset of the state estimates becomes necessary.

Aiding Sensors

INS INS Correction

Filter

Correct INS Output
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Loosely Coupled Integration

GNSS KF

GNSS Ranging Processor

GNSS Receiver

INS INS Correction

Filter

Correct INS Output

PV

PV +

−

PVA

Optional

Simple
Cascade KF therefore
integration KF BW must
be less than that of GNSS
KF (e.g. update interval of
10s)
Minimum of 4 satellites
required
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Tightly Coupled Integration

GNSS Ranging Processor

GNSS Receiver

INS INS Correction

Filter

INS derived psuedo-range and -rates

Correct INS Output

ρ̃, ˙̃ρ

ρ̂, ˙̂ρ

No cascade KF
KF BW must be kept less
than the GNSS tracking
loop
Does not require 4
satellites
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ECEF INS/GNSS Loosely Coupled

~zek =

~̃rGPS −~̂reeb
~̃vGPS − ~̂veeb

 (1)

H =

03×3 03×3 I3×3 03×3 03×3

03×3 I3×3 03×3 03×3 03×3

 (2)

Theoretically, the lever arm from the INS to the GNSS antenna needs
to be included, but in practice, the coupling of the attitude errors and
gyro biases into the measurement through the lever arm is week.
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INS Derived Psuedo-Range and -Rates

The computed INS psuedo-range and rates with respect to the jth
satellite, ρ̂j and ˙̂ρj

ρ̂j =
√

[~rees,j −~̂reeb]T [~rees,j −~̂reeb] + δρ̂rc,j (3)

˙̂ρj = ~uTj [~ves,j − ~̂veeb]T + δ ˙̂ρrc,j (4)

where

~uj =
~rees,j −~̂reeb
‖~rees,j −~̂reeb‖

(5)
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ECEF INS/GNSS Tightly Coupled

Pseudo-ranges are used instead of XYZ.

~z =

(
~zρ
~zρ̇

)
(6)

where
~zρ = (ρgps,1 − ρ̂1, ρgps,2 − ρ̂2, . . . , ρgps,n − ρ̂n) (7)

~zρ̇ = (ρ̇gps,1 − ˙̂ρ1, ρ̇gps,2 − ˙̂ρ2, . . . , ρ̇gps,n − ˙̂ρn) (8)

~x(t) =
(
δ ~ψe

eb δ~veeb δ~reeb ~ba ~bg δρrc δρ̇rc

)T
(9)

ρgps,j , and ρ̇gps,j and ρ̂j , and ˙̂ρj are the psuedo-ranges and rates
obtained from the GNSS and INS, respectively, for the jth satellite.
These equations are none linear and an EKF needs to be used. δρrc
and δρ̇rc are the clock bias and drift.
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Extended Kalman Filter (EKF)

Fk =
∂f(~x)

∂~x

∣∣∣∣
~x=~̂xk|k−1

, Hk =
∂h(~x)

∂~x

∣∣∣∣
~x=~̂xk|k−1

(10)

where

∂f(~x)

∂~x
=


∂f1
∂x1

∂f1
∂x2

· · ·
∂f2
∂x1

∂f2
∂x2

· · ·
... . . . ...

 ,
∂h(~x)

∂~x
=


∂h1
∂x1

∂h1
∂x2

· · ·
∂h2
∂x1

∂h2
∂x2

· · ·
... . . . ...

 (11)
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Tightly Coupled Linearized Measurement Matrix

H =



01×3 01×3 ~uT1 01×3 01×3 1 01×3

01×3 01×3 ~uT2 01×3 01×3 1 01×3
...

...
...

...
...

...
...

01×3 01×3 ~uTn 01×3 01×3 1 01×3

01×3 ~uT1 01×3 01×3 01×3 01×3 1

01×3 ~uT2 01×3 01×3 01×3 01×3 1
...

...
...

...
...

...
...

01×3 ~uTn 01×3 01×3 01×3 01×3 1



(12)
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Deeply Coupled

In deeply coupled GPS/INS integration
the integration architecture utlizes the INS to aid in the tracking
loops,
allows fast aquistion,
performance improvement with low signal-to-noise environments,
and
more resistance to jamming.
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Deeply Coupled

Reference
Oscillator

Early, prompt, and late
reference code generator

Receiver
Clock

Carrier
NCO

Code
NCO

Ic Qc

LOS Projection
Pseudorange &
Pseudorange

Rates

Master
Filter

Correl-
ators one

for
each sat.

Pre-
Filters

Error state vec
one per sat.

Error Cov
one per sat.

IE ,QE

IP ,QP

IL,QL

I0,Q0

Signal samples
from front-end

CE CP CL

IMU

INS PVA
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Observability

Are the states observable given a certain set of measurements?
The system is observable if the observability matrix

O(k) =


H(k − n + 1)

H(k − n − 2)Φ(k − n + 1)
...

H(k)Φ(k − 1) . . .Φ(k − n + 1)

 (13)

where n is the number of states, has a rank of n. The rank of O is a
binary indicator and does not provide a measure of how close the
system is to being unobservable, hence, is prone to numerical
ill-conditioning.
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A Better Observability Measure

In addition to the computation of the rank of O(k), compute the
Singular Value Decomposition (SVD) of O(k) as

O = UΣV ∗ (14)

and observe the diagonal values of the matrix Σ. Using this approach
it is possible to monitor the variations in the system observability due
to changes in system dynamics.
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Corrupt/Missing Data

In Many cases the data from the aiding sensor may get corrupt and
even not available. In those cases we can’t use those measurements in
the Kalman filter. Therefore

1 Set the Kalman gain to zero, or
2 Do not run the state or error covariance update steps.
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