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X(t) = F(0)X(t) + G(2)w(2) (1)
y(t) = H(t)x(t) + v(t) (2)

Byy = " = T+ Fq7s 3)

where Fi_1 is the average of F at times t and t — 75, and first order
approximation is used. Leading to

X = Pp_1 Xp—1 + W1 4)

Kalman Filter
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Review: Assumptions NEW MEXICO TECH
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@ wy and v are drawn from a Gaussian distribution, uncorrelated
have zero mean and statistically independent.

E{ww.} = 0 izk (6)
R, i=k

(v} =1 " ik (7)

]E{vvk\?,-T}:{o Vi, k (8)

@ State covariance matrix

1
Qu-1 ~ 3 [‘bk—l Gr1Q(tk_1)Gl_1®] ;1 + Gk—lQ(tk—1)GkT_1} Ts
(9)

Kalman Filter
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Review: Kalman filter data flow NEW MEXICO TECH
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Initial estimate (;?0 and Po)

v

Compute Kalman gain
Kic = Pi—1H{ (HkPie—1HE + Ri) ™

5 PO Update estimate with measurement Zj
Xklk—1 = Pk—1Xk—1]k-1 2 2 3, 2
! | Xk = Xuh—1 + Ki(Zk = HiXijk-1)

Project ahead ‘
Pk = Quet + Pr1Pr_ip1®)

k=k+1

Update error covariance
Py = (1 = KiHy) Py (1 = KiHi) T + K ReK
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e Kalman filter (KF) is optimal under the assumptions that the
system is linear and the noise is uncorrelated

o Under these assumptions KF provides an unbiased and minimum
variance estimate.

o If the Gaussian assumptions is not true, Kalman filter is biased
and not minimum variance.

o If the noise is correlated we can augment the states of the system
to maintain the uncorrelated requirement of the system noise.

Kalman Filter
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Correlated State Noise NEW MEXICO
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Given a state space system
x1(t) = F(t)x(t) + Gi(t)wa(t)

n(t) = Hi(t)xa(t) + v(t)
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Correlated State Noise NEW MEXICO TECH
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Given a state space system
x1(t) = F(t)x(t) + Gi(t)wa(t)

n(t) = Hi(t)xa(t) + v(t)

As we have seen the noise wi(t) may be non-white, e.g., correlated
Gaussian noise, and as such may be modeled as

%(t) = Fa(t)%(t) + Ga(t)wa(t)

State Augmentation
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Correlated State Noise NEW MEXICO TECH
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Given a state space system
x1(t) = F(t)x(t) + Gi(t)wa(t)

n(t) = Hi(t)xa(t) + v(t)
As we have seen the noise wi(t) may be non-white, e.g., correlated
Gaussian noise, and as such may be modeled as

%(t) = Fa(t)%(t) + Ga(t)wa(t)

V_Vl(t) = Hg(t))?z(t)

State Augmentation
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Correlated State Noise NEW MEXICO TECH
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Define a new augmented state

X1 (t
g = %(t) (10)
X (t)
therefore,
. % (t Fi(t) GiHo(t 2 (t
foug = >.<1() _ 1(t)  GiH(t) 1(t) N (1) (11)
and

)?2(t) 0 Fz(t) ) _’z(t) Gz(t)

State Augmentation
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Given a state space system

X1(t) = F1(t)x(t) + Gu(t)w(t)

n(t) = Hi(t)x(t) + vi(t)

In this case the measurement noise vj may be correlated
%o(t) = Fa()%(t) + Gao(t)va(t)

\71(1‘) = HQ(t))?z(t)

State Augmentation
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Correlated Measurement Noise NEW MEXICO TECH
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Define a new augmented state

Xaug = (13)
R0
therefore,
. X1(t) Fi(t) 0 Xi(t) Gi(t) 0 w(t)
Xaug = | . = +
)?g(t) 0 Fz(t) )?2(1‘) 0 Gz(t) \72(1')
(14)
and

State Augmentation
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You are to design a system that estimates the position and velocity of
a moving point in a straight line. You have:

@ an accelerometer corrupted with noise

@ an aiding sensor allowing you to measure absolute position that
is also corrupted with noise.

(NMT) 5 ton and N
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e Sampling Rate Fs = 100Hz.
@ Accelerometer specs
@ VRW = 1mg/VHz.
@ Bl = 7mg with correlation time 6s.
o Position measurement is corrupted with WGN. ~ N’(O,af,), where
op = 2.5m
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Input - Acceleration NEW MEXICO
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True Acceleration and Acceleration with Noise

2 I I I I

Time (sec)

Meas Accel

True Accel
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Aiding Position Measurement NEW MEXICO
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Absolute position measurement corrupted with noise
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Computed Position and Velocity NEW MEXICO
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Using only the acceleration measurement and an integration approach
to compute the velocity, then integrate again to get position.

Velocity Position
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Different Approaches NEW MEXICO
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@ Clean up the noisy input to the system by filtering
@ Use Kalman filtering techniques with
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Different Approaches NEW MEXICO
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@ Clean up the noisy input to the system by filtering
@ Use Kalman filtering techniques with
o A model of the system dynamics (too restrictive)
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Different Approaches NEW MEXICO
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@ Clean up the noisy input to the system by filtering
@ Use Kalman filtering techniques with

o A model of the system dynamics (too restrictive)
o A model of the error dynamics and correct the system output in
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Different Approaches NEW MEXICO
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@ Clean up the noisy input to the system by filtering
@ Use Kalman filtering techniques with

o A model of the system dynamics (too restrictive)

o A model of the error dynamics and correct the system output in
e open-loop configuration, or
e closed-loop configuration.
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Approach 1 — Filtered input

Filtered Accel Measurement W MEXICO TECH
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Accelerometer

Time (sec)

Measured ——— Truth
Filtered

ard 5 ation and Navigation



Approach 1 — Filtered input

Position and Velocity W MEXICO TECH
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. g
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Approach 1 — Filtered input

Position and Velocity Errors W MEXICO TECH
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Velocity Error Position Error
2 : : ‘ 50 \ \ \
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Open-Loop Integration NEW MEXICO
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True Pos + errors Aiding sensor errors - INS errors
_l’_
Aiding Pos Sensor O Filter
‘ + Inertial
INS (O errors
+
est.
INS PV + errors

Correct INS Output
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Closed-Loop Integration NEW MEXICO
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If error estimates are fedback to correct the INS mechanization, a
reset of the state estimates becomes necessary.

+
Aiding Pos Sensor O Filter

INS INS Correction

Correct INS Output

Example
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e State noise covariance matrix (continuous)
E{w(t)w' (1)} = Q(t)d(t — 7)
@ State noise covariance matrix (discrete)

Qe =k

E{wiw ) = 0 ik

@ Measurement noise covariance matrix
Ry i=k

E{av} = 0 itk

@ Initial error covariance matrix
Po=E{(% — %) (%0 — %)} = E{ééqy }

Example
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The position, velocity and acceleration may be modeled using the
following kinematic model.

() = v() .

v(t) = a(t)

where a(t) is the input. Therefore, our estimate of the position is p(t)
that is the double integration of the acceleration.

Example
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Assuming that the accelerometer sensor measurement may be
modeled as
a(t) = a(t) + b(t) + wa(t) (17)
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Assuming that the accelerometer sensor measurement may be
modeled as

a(t) = a(t) + b(t) + wa(t) (17)

and the bias is Markov, therefore
. 1
b(t) = — = b(t) + ws(1) (18)
Tc

where w,(t) and wp(t) are zero mean WGN with variances,
respectively, Fs - VRW?

E{wp(t)wp(t + 1)} = Qp(t)d(t — 7) (19)
0s(1) — 27 (20)

and T, is the correlation time and op; is the bias instability.

Example
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Assuming that the accelerometer sensor measurement may be
modeled as

a(t) = a(t) + b(t) + wa(t) (17)

and the bias is Markov, therefore
. 1
b(t) = — = b(t) + ws(1) (18)
Tc

where w,(t) and wp(t) are zero mean WGN with variances,
respectively, Fs - VRW?

E{wp(t)wp(t + 1)} = Qp(t)d(t — 7) (19)
0s(1) — 27 (20)

and T, is the correlation time and op; is the bias instability.
Make sure that the VRW and opg; are converted to have S| units.

Example
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Define error terms as

5p(t) = p(t) — A(1), 1)
0p(t) = p(t) — p(t)
— () - o(t) 22)
=dv(t)

and

= a(t) - 4(2) (23)

where b(t) is modeled as shown in Eq. 18

Example
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State Space Formulation NEW MEXICO

5p(t) 01 0 sp(t) 0 0 0 0
t)=|ov)| =10 0 —1||sve)|+]0 =1 of | wat)
b(t) 0 0 —+/ \ b(t) 0 0 1/ \w(t)

= F(£)%(t) + G(£)W(t)

Example
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@ The continuous state noise covariance matrix Q(t) is

0 0 0
QRQ(t)=10 VRW?2 0 (25)

0 0 2”%/

Tc

@ The measurement noise covariance matrix is R = 0,2,, where o0, is
the standard deviation of the noise of the absolute position
sensor.
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Now we are ready to start the implementation but first we have to
discretize the system.

X(k + 1) = d(k)x(k) + wq(k) (26)

where
®(k) ~ T + Fdt (27)

with the measurement equation
y(k) = HZ + wp(k) = 6p(k) + wp(k) (28)
where H =[1 0 0]. The discrete Q4 is approximated as

Q1 = (011 6(61) Qte1) 6T (1)) 0T+
G(tk-1)Q(tk—1)G T (ti—1)]dt

(29)

Example
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Approach 2 — Open-Loop Compensation

Position and Velocity NEW MEXICO TECH
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Open-loop Correction

Best estimate = INS out (pos & vel) + KF est error (pos & vel)

M :) .o .
Velocity Position
20 T T T T 200 T T T
Directly Computed Vel Directly Computed Pos
5 True Vel  ———— _| True Pos
Estimated Vel (KF) L Estimated Pos (KF) B
150
10 -
» o L i
s T 100
0
50 [~ -
—5
_10 | | | | o
0 10 20 30 40 50 0 10 20 30 40 50
Time (sec) Time (seq)

Example

N and 28 /33



Approach 2 — Open-Loop Compensation

Position and Velocity Errors

W MEXICO TECH

Velocity Error
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Approach 2 — Open-Loop Compensation

Pos Error & Bias Estimate W MEXICO TECH
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Position Error Bias
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Approach 3 — Closed-Loop Compensation

Position and Velocity NEW MEXICO TECH
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Closed-loop Correction

Best estimate = INS out (pos,vel, & bias) + KF est error (pos, vel & bias)
Use best estimate on next iteration of INS

Accel estimate = accel meas - est bias
Reset state estimates before next call to KF

Velocity Position

T T T 200 T T T T
Directly Computed Vel ————— Directly Computed Pos  ————
True Vel

Estimated Vel (KF)

True Pos
Estimated Pos (KF)
150

Example
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Approach 3 — Closed-Loop Compensation

Position and Velocity Errors W MEXICO TECH
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Approach 3 — Closed-Loop Compensation

Pos Error & Bias Estimate W MEXICO TECH
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Position Error Bias
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