Lecture

Navigation Mathematics: Coordinate Frames

EE 570: Location and Navigation

Lecture Notes Update on January 21, 2016

Kevin Wedward and Aly El-Osery, Electrical Engineering Dept., New Mexico Tech
In collaboration with
Stephen Bruder, Electrical & Computer Engineering, Embry-Riddle Aeronautical University

Overview

Contents

1 Frames 1
2 ECI 2
3 ECEF 3
4 Nav 4
5 Body 5
6 Other 6

1 Coordinate Frames

Coordinate Frames

Right-hand coordinate frame α has
1. origin o^α at which frame is located, and
2. orthonormal vectors $x^\alpha, y^\alpha, z^\alpha$ that serve as axes and indicate positive directions.
Coordinate Frames
This definition implies
\[x^\alpha \cdot x^\alpha = y^\alpha \cdot y^\alpha = z^\alpha \cdot z^\alpha = 1\]
\[x^\alpha \cdot y^\alpha = y^\alpha \cdot z^\alpha = z^\alpha \cdot x^\alpha = 0\]
\[x^\alpha \times y^\alpha = z^\alpha \]
\[y^\alpha \times z^\alpha = x^\alpha \]
\[z^\alpha \times x^\alpha = y^\alpha \]

Coordinate Frames
Coordinate frames used as means to describe position and orientation/attitude of one frame with respect to another.

2 Earth-Centered Inertial (ECI) Frame

Earth-Centered Inertial (ECI) Frame
ECI Frame

- defined as an inertial frame, i.e., it is assumed not to accelerate or rotate with respect to the universe
 - ECI will be attached to earth, but won’t spin with earth
- inertial sensors measure “inertial” motion relative to ECI frame
 - Gyroscopes measure rate of change of orientation
 - Accelerometers measure linear acceleration
- referred to as i-frame
ECI Frame

- Origin o^i of ECI is located near the center of mass (center of ellipsoidal representation) of the earth.
- z^i-axis points along the nominal axis of rotation of the earth.
 - True north, not magnetic north!
- x^i-axis lies in the equatorial plane and points from the earth to the sun at the vernal (spring) equinox.
 - Defined by the intersection of the equatorial plane and the earth-sun orbital plane.
- y^i-axis chosen to complete right hand coordinate system (90° ahead of x^i in direction of earth's rotation).

The ECI coordinate frame does not rotate with the earth.

3 Earth-Centered Earth-Fixed (ECEF) Frame

Earth-Centered Earth-Fixed (ECEF) Frame

- Not an inertial frame.
- Fixed with respect to the earth, i.e., attached to the earth and spins with earth.
- Referred to as e-frame.
ECEF Frame
- origin o^e is located (nearly) at the center of the mass of the earth (co-located with ECI’s o^i)
- z^e-axis points along the nominal axis of earth’s rotation (same as ECI’s z^i)
- x^e-axis lies at the intersection of the equatorial plane and the reference meridian plane (i.e., Greenwich/Prime Meridian)
 - tied to concept of latitude and longitude
 - x^e points from o^e towards 0° longitude and 0° latitude (a little west of central Africa)
- y^e-axis is chosen to complete right hand coordinate system

ECEF Frame
- z^e-axis points along axis of earth’s rotation
- x^e-axis points towards zero latitude and longitude
- y^e-axis completes right hand coordinate system
- NMT’s (lat, long) ≈ (34.07°, −106.9°) = (34.07°, 253.1°)

Local Navigation (Nav) Frame
- typically not fixed with respect to the earth, i.e., free to move, but has specified orientation
- also called geodetic, geographic, locally level, or tangential frame
- referred to as n-frame

Nav Frame
- origin o^n is located at the center of mass of the body (e.g., air, land or sea vehicle) of interest
- z^n-axis points "down" normal to the earth’s surface (approximately towards the center of the earth)
- x^n - y^n axes then constrained to lie in plane locally-level (tangential) to the earth’s surface
 - x^n-axis points to the north pole
 - y^n-axis is chosen to complete right hand coordinate system
- frame’s configuration is often referred to as the NED frame
 - x^n → North, y^n → East, and z^n → Down
Nav Frame

- o^n on (potentially moving) body
- x^n-axis points north
- y^n-axis points east
- z^n-axis points "down"

5 Body Frame

Body Frame

- attached to moving body (e.g., land, air or sea vehicle) and moves (position and orientation/attitude) with body
- origin o^b located at the center of mass of the body (co-located with Nav frame’s o^n)
- x^b-axis points “forward” wrt moving body
- z^b-axis points loosely “down”
 - varies with the roll/pitch of the vehicle
- y^b-axis chosen to complete right hand coordinate system
- referred to as b-frame

Body Frame

- body frame is fixed with respect to the vehicle
- x^b “forward”
- z^b “down”
- y^b completes right hand coordinate system ("right")
6 Other Frames

Other Frames

- Wander Azimuth Frame (alternative to the Nav frame)
 - does not always point north to avoid numerical stability problems near the poles
- Other locally level frames
 - Tangential Frame
 - typically, refers to another type of the ECEF frame fixed to the Earth’s surface (not moving like the \(n \)-frame)
 - Computer Frame
 - virtual coordinate frame that represents where we think that we are

The End