Lecture Navigation Mathematics: Coordinate Frames

EE 570: Location and Navigation

Lecture Notes Update on January 21, 2016

Kevin Wedward and Aly El-Osery, Electrical Engineering Dept., New Mexico Tech In collaboration with Stephen Bruder, Electrical & Computer Engineering, Embry-Riddle Aeronautical University

.1

.2

.3

Overview

Contents

1	Frames	1
2	ECI	2
3	ECEF	3
4	Nav	4
5	Body	5
6	Other	6

1 Coordinate Frames

Coordinate Frames

Right-hand coordinate frame α has

1. origin o^{α} at which frame is located, and

2. orthonormal vectors $x^{\alpha}, y^{\alpha}, z^{\alpha}$ that serve as axes and indicate positive directions.

Coordinate Frames

This definition implies

$$\begin{aligned} x^{\alpha} \cdot x^{\alpha} &= y^{\alpha} \cdot y^{\alpha} = z^{\alpha} \cdot z^{\alpha} = 1 \\ x^{\alpha} \cdot y^{\alpha} &= y^{\alpha} \cdot z^{\alpha} = z^{\alpha} \cdot x^{\alpha} = 0 \\ x^{\alpha} \times y^{\alpha} &= z^{\alpha} \\ y^{\alpha} \times z^{\alpha} &= x^{\alpha} \\ z^{\alpha} \times x^{\alpha} &= y^{\alpha} \end{aligned}$$

Coordinate Frames

Coordinate frames used as means to describe position and orientation/attitude of one frame with respect to another.

.4

.5

.6

2 Earth-Centered Inertial (ECI) Frame

Earth-Centered Inertial (ECI) Frame

ECI Frame

- defined as an inertial frame, i.e., it is assumed not to accelerate or rotate with respect to the universe
 - ECI will be attached to earth, but won't spin with earth
- inertial sensors measure "inertial" motion relative to ECI frame
 - Gyroscopes measure rate of change of orientation
 - Accelerometers measure linear acceleration
- referred to as *i*-frame

ECI Frame

- origin o^i of ECI is located near the center of mass (center of ellipsoidal representation) of the earth
- z^i -axis points along the nominal axis of rotation of the earth
 - true north not magnetic north!
- x^i -axis lies in the equatorial plane and points from the earth to the sun at the vernal (spring) equinox
 - defined by the intersection of the equatorial plane and the earth-sun orbital plane

.7

.8

.9

• y^i -axis chosen to complete right hand coordinate system (90° ahead of x^i in direction of earth's rotation)

The ECI coordinate frame does not rotate with the earth

ECI Frame

- *oⁱ* at earth's center
- z^i -axis points along the earth's axis of rotation
- x^i -axis points towards sun at vernal (spring) equinox
- *yⁱ*-axis completes a right hand coordinate system

3 Earth-Centered Earth-Fixed (ECEF) Frame

Earth-Centered Earth-Fixed (ECEF) Frame

ECEF Frame

- not an inertial frame
- fixed with respect to the earth, i.e., attached to the earth and spins with earth
- referred to as *e*-frame

ECEF Frame

- origin o^e is located (nearly) at the center of the mass of the earth (co-located with ECI's o^i)
- z^{e} -axis points along the nominal axis of earth's rotation (same as ECI's z^{i})
- x^e -axis lies at the intersection of the equatorial plane and the reference meridian plane (i.e., Greenwich/Prime Meridian)
 - tied to concept of latitude and longitude
 - x^e points from o^e towards 0° longitude and 0° latitude (a little west of central Africa)
- *y^e*-axis is chosen to complete right hand coordinate system

ECEF Frame

- z^e -axis points along axis of earth's rotation
- x^e-axis points towards zero latitude and longitude
- *y^e*-axis completes right hand coordinate system
- NMT's (lat, long) $\approx (34.07^{\circ}, -106.9^{\circ}) = (34.07^{\circ}, 253.1^{\circ})$

4 Local Navigation (Nav) Frame

Local Navigation (Nav) Frame

Nav Frame

- typically **not** fixed with respect to the earth, i.e., free to move, but has specified orientation
- also called geodetic, geographic, locally level, or tangential frame
- referred to as *n*-frame

Nav Frame

- origin *oⁿ* is located at the center of mass of the body (e.g., air, land or sea vehicle) of interest
- z^n -axis points "down" normal to the earth's surface (approximately towards the center of the earth)
- x^n y^n axes then constrained to lie in plane locally-level (tangential) to the earth's surface
 - x^n -axis points to the north pole
 - y^n -axis is chosen to complete right hand coordinate system
- frame's configuration is often referred to as the NED frame
 - $x^n \rightarrow \text{North}, y^n \rightarrow \text{East}, \text{ and } z^n \rightarrow \text{Down}$

.10

.11

.12

Nav Frame

- o^n on (potentially moving) body
- x^n -axis points north
- *y*^{*n*}-axis points east
- *zⁿ*-axis points "down"

5 Body Frame

Body Frame

Body Frame

- attached to moving body (e.g., land, air or sea vehicle) and moves (position and orientation/attitute) with body
- origin o^b located at the center of mass of the body (co-located with Nav frame's o^n)
- *x^b*-axis points "forward" *wrt* moving body
- *z^b*-axis points loosely "down"
 - varies with the roll/pitch of the vehicle
- y^b -axis chosen to complete right hand coordinate system
- referred to as *b*-frame

Body Frame

- body frame is fixed with respect to the vehicle
- x^b "forward"
- z^b "down"
- y^b completes right hand coordinate system ("right")

.16

.14

.15

6 Other Frames

Other Frames

- Wander Azimuth Frame (alternative to the Nav frame)
 - does not always point north to avoid numerical stability problems near the poles

.17

.18

.19

- Other locally level frames
 - Tangential Frame
 - * typically, refers to another type of the ECEF frame fixed to the Earth's surface (not moving like the *n*-frame)
 - Computer Frame
 - * virtual coordinate frame that represents where we think that we are

The End