EE 570: Location and Navigation Navigation Mathematics: Coordinate Frames

Kevin Wedeward Aly El-Osery

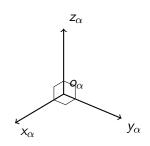
Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA

In Collaboration with Stephen Bruder Electrical and Computer Engineering Department Embry-Riddle Aeronautical Univesity Prescott, Arizona, USA

January 25, 2016

1 / 19

Lecture Topics


- Coordinate Frames
- 2 Earth-Centered Inertial (ECI) Frame
- 8 Earth-Centered Earth-Fixed (ECEF) Frame
- 4 Local Navigation (Nav) Frame
- 6 Body Frame
- Other Frames

Coordinate Frames

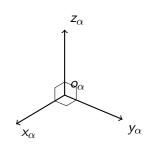
Right-hand coordinate frame α has

- **1** origin o_{α} at which frame is located, and
- orthonormal vectors $x_{\alpha}, y_{\alpha}, z_{\alpha}$ that serve as axes and indicate positive directions.

EE 570: Location and Navigation

Coordinate Frames

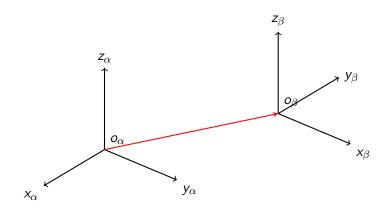
This definition implies


$$x_{\alpha} \cdot x_{\alpha} = y_{\alpha} \cdot y_{\alpha} = z_{\alpha} \cdot z_{\alpha} = 1$$

$$x_{\alpha} \cdot y_{\alpha} = y_{\alpha} \cdot z_{\alpha} = z_{\alpha} \cdot x_{\alpha} = 0$$

$$x_{\alpha} \times y_{\alpha} = z_{\alpha}$$

$$y_{\alpha} \times z_{\alpha} = x_{\alpha}$$


$$z_{\alpha} \times x_{\alpha} = y_{\alpha}$$

Coordinate Frames

Coordinate frames used as means to describe position and orientation/attitude of one frame with respect to another.

EE 570: Location and Navigation

Earth-Centered Inertial (ECI) Frame

ECI Frame

- defined as an inertial frame, i.e., it is assumed not to accelerate or rotate with respect to the universe
 - ECI will be attached to earth, but won't spin with earth
- inertial sensors measure "inertial" motion relative to ECI frame

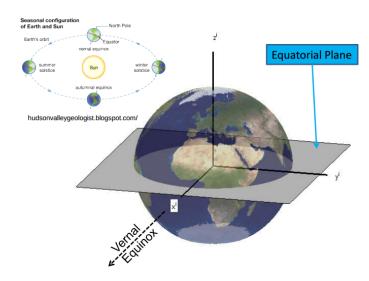
EE 570: Location and Navigation

- Gyroscopes measure rate of change of orientation
- Accelerometers measure linear acceleration
- referred to as *i*-frame

- origin o_i of ECI is located near the center of mass (center of ellipsoidal representation) of the earth
- ullet z_i -axis points along the nominal axis of rotation of the earth
 - true north **not** magnetic north!
- x_i -axis lies in the equatorial plane and points from the earth to the sun at the vernal (spring) equinox
 - defined by the intersection of the equatorial plane and the earth-sun orbital plane
- y_i -axis chosen to complete right hand coordinate system (90° ahead of x_i in direction of earth's rotation)

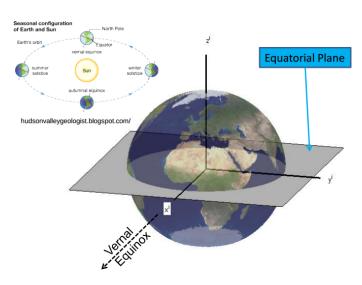
EE 570: Location and Navigation

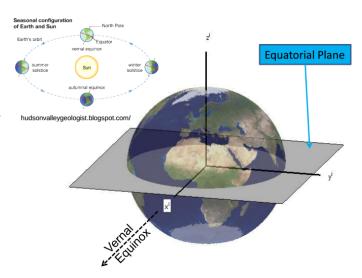
7 / 19

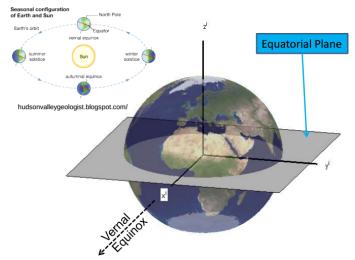


- origin o_i of ECI is located near the center of mass (center of ellipsoidal representation) of the earth
- ullet z_i -axis points along the nominal axis of rotation of the earth
 - true north not magnetic north!
- x_i -axis lies in the equatorial plane and points from the earth to the sun at the vernal (spring) equinox
 - defined by the intersection of the equatorial plane and the earth-sun orbital plane
- y_i -axis chosen to complete right hand coordinate system (90° ahead of x_i in direction of earth's rotation)

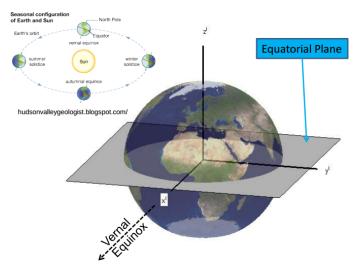
The ECI coordinate frame does **not** rotate with the earth


EE 570: Location and Navigation


o_i at earth's center


 z_i-axis points along the earth's axis of rotation

- z_i-axis points along the earth's axis of rotation
- x_i-axis points towards sun at vernal (spring) equinox



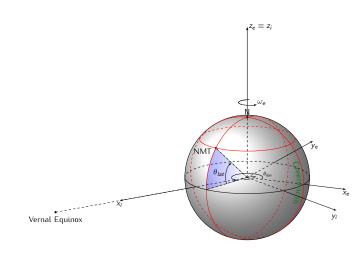
ECI

- z_i -axis points along the
- earth's axis of rotation
- x_i -axis points towards sun at vernal (spring) equinox
- yi-axis completes a right hand coordinate system

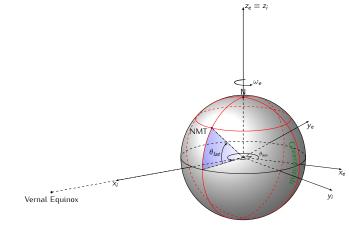
EE 570: Location and Navigation

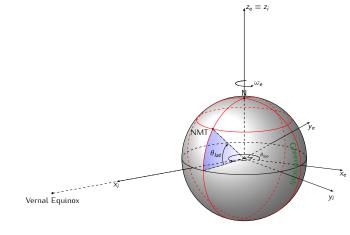
Earth-Centered Earth-Fixed (ECEF) Frame

FCFF Frame

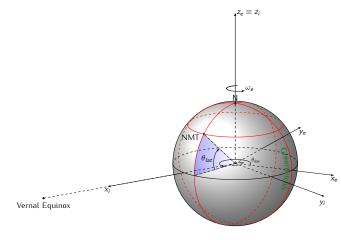

- not an inertial frame
- fixed with respect to the earth, i.e., attached to the earth and spins with earth
- referred to as e-frame

January 25, 2016

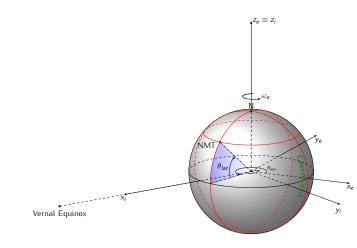

- origin o_e is located (nearly) at the center of the mass of the earth (co-located with ECI's o_i)
- z_e -axis points along the nominal axis of earth's rotation (same as ECI's z_i)
- x_e -axis lies at the intersection of the equatorial plane and the reference meridian plane (i.e., Greenwich/Prime Meridian)
 - tied to concept of latitude and longitude
 - x_e points from o_e towards 0_o longitude and 0_o latitude (a little west of central Africa)
- \bullet y_e -axis is chosen to complete right hand coordinate system



 z_e-axis points along axis of earth's rotation



- z_e-axis points along axis of earth's rotation
- x_e-axis points towards zero latitude and longitude



- z_e-axis points along axis of earth's rotation
- x_e-axis points towards zero latitude and longitude
- y_e-axis completes right hand coordinate system

- z_e-axis points along axis of earth's rotation
- x_e-axis points towards zero latitude and longitude
- y_e-axis completes right hand coordinate system
- NMT's (lat, long) \approx (34.07°, -106.9°) = (34.07°, 253.1°)

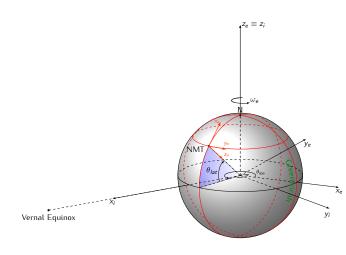
Local Navigation (Nav) Frame

Nav Frame

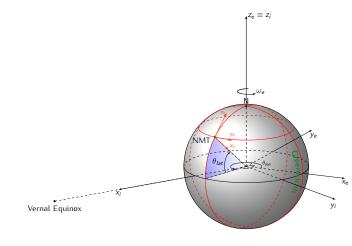
- typically **not** fixed with respect to the earth, i.e., free to move, but has specified orientation
- also called geodetic, geographic, locally level, or tangential frame

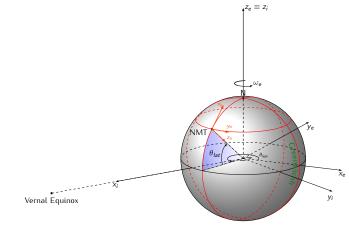
EE 570: Location and Navigation

• referred to as *n*-frame

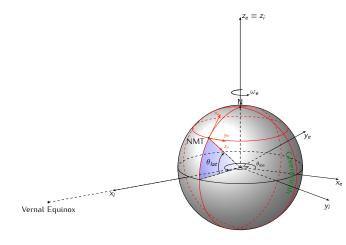

Nav

January 25, 2016

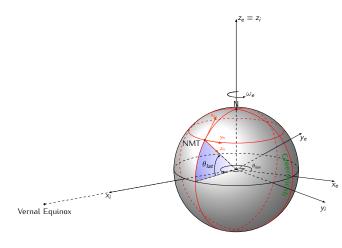

- origin o_n is located at the center of mass of the body (e.g., air, land or sea vehicle) of interest
- z_n -axis points "down" normal to the earth's surface (approximately towards the center of the earth)
- $x_n y_n$ axes then constrained to lie in plane locally-level (tangential) to the earth's surface
 - x_n -axis points to the north pole
 - y_n -axis is chosen to complete right hand coordinate system
- frame's configuration is often referred to as the NED frame
 - $x_n \to \text{North}$, $y_n \to \text{East}$, and $z_n \to \text{Down}$



o_n on (potentially moving) body



- o_n on (potentially moving) body
- x_n-axis points north

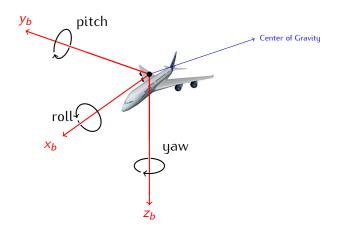


- o_n on (potentially moving) body
- \circ x_n -axis points north
- y_n-axis points east

- o_n on (potentially moving) body
- x_n -axis points north
- y_n -axis points east
- zn-axis points "down"

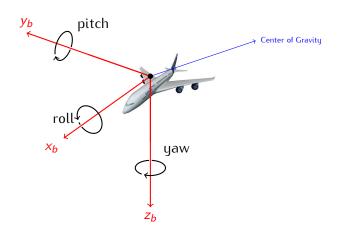
EE 570: Location and Navigation

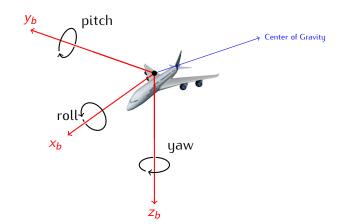
Body Frame


- attached to moving body (e.g., land, air or sea vehicle) and moves (position and orientation/attitute) with body
- origin o_b located at the center of mass of the body (co-located with Nav frame's o_n)

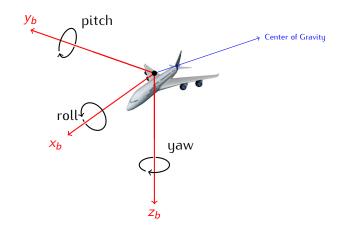
EE 570: Location and Navigation

- x_b -axis points "forward" wrt moving body
- z_b-axis points loosely "down"
 - varies with the roll/pitch of the vehicle
- \bullet y_b -axis chosen to complete right hand coordinate system
- referred to as *b*—frame

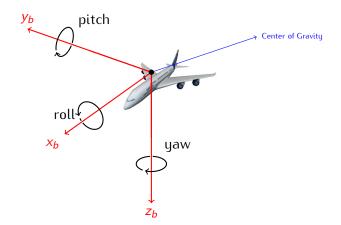

15 / 19



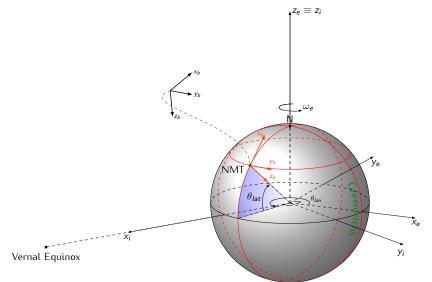
 body frame is fixed with respect to the vehicle


- body frame is fixed with respect to the vehicle
- x_b "forward"

16 / 19



- body frame is fixed with respect to the vehicle
- x_b "forward"
 - z_b "down"



- body frame is fixed with respect to the vehicle
- x_b "forward"
- z_b "down"
- y_b completes right hand coordinate system ("right")

EE 570: Location and Navigation

January 25, 2016

Other Frames

- Wander Azimuth Frame (alternative to the Nav frame)
 - does not always point north to avoid numerical stability problems near the poles
- Other locally level frames
 - Tangential Frame
 - typically, refers to another type of the ECEF frame fixed to the Earth's surface (not moving like the *n*-frame)
 - Computer Frame
 - virtual coordinate frame that represents where we think that we are

18 / 19

The End

