EE 570: Location and Navigation Navigation Mathematics: Rotation Matrices, Part II

Kevin Wedeward Aly El-Osery

Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA

In Collaboration with Stephen Bruder Electrical and Computer Engineering Department Embry-Riddle Aeronautical Univesity Prescott, Arizona, USA

January 28, 2016

- 2 Parameterizations of Rotations
- Fixed versus Relative Rotations
 - Composition of Relative-axis Rotations
- 5 Composition of Fixed-axis Rotations
- 6 Example

Rotation matrix, C_2^1

describes orientation of

Rotation matrix, C_2^1

• describes orientation of frame 2 with respect to frame 1

Rotation matrix, C_2^1

- describes orientation of frame 2 with respect to frame 1
- is of size

Rotation matrix, C_2^1

- describes orientation of frame 2 with respect to frame 1
- is of size 3 × 3

Rotation matrix, C_2^1

- describes orientation of frame 2 with respect to frame 1
- is of size 3 × 3
- is constructed via

Rotation matrix, C_2^1

- describes orientation of frame 2 with respect to frame 1
- is of size 3 × 3

• is constructed via
$$[x_2^1, y_2^1, z_2^1] = \begin{bmatrix} x_2 \cdot x_1, & y_2 \cdot x_1, & z_2 \cdot x_1 \\ x_2 \cdot y_1, & y_2 \cdot y_1, & z_2 \cdot y_1 \\ x_2 \cdot z_1, & y_2 \cdot z_1, & z_2 \cdot z_1 \end{bmatrix}$$

Rotation matrix, C_2^1

- describes orientation of frame 2 with respect to frame 1
- is of size 3 × 3
- is constructed via $\begin{bmatrix} x_2^1, y_2^1, z_2^1 \end{bmatrix} = \begin{bmatrix} x_2 \cdot x_1, y_2 \cdot x_1, z_2 \cdot x_1 \\ x_2 \cdot y_1, y_2 \cdot y_1, z_2 \cdot y_1 \\ x_2 \cdot z_1, y_2 \cdot z_1, z_2 \cdot z_1 \end{bmatrix}$
- has inverse $[C_2^1]^{-1} =$

Rotation matrix, C_2^1

- describes orientation of frame 2 with respect to frame 1
- is of size 3 × 3
- is constructed via $[x_2^1, y_2^1, z_2^1] = \begin{bmatrix} x_2 \cdot x_1, y_2 \cdot x_1, z_2 \cdot x_1 \\ x_2 \cdot y_1, y_2 \cdot y_1, z_2 \cdot y_1 \\ x_2 \cdot z_1, y_2 \cdot z_1, z_2 \cdot z_1 \end{bmatrix}$
- has inverse $[C_2^1]^{-1} = [C_2^1]^T =$

Review

January 28, 2016

3/16

Rotation matrix, C_2^1

- describes orientation of frame 2 with respect to frame 1
- is of size 3×3

Kevin Wedeward, Aly El-Osery (NMT)

• is constructed via $[x_2^1, y_2^1, z_2^1] = \begin{bmatrix} x_2 \cdot x_1, y_2 \cdot x_1, z_2 \cdot x_1 \\ x_2 \cdot y_1, y_2 \cdot y_1, z_2 \cdot y_1 \\ x_2 \cdot z_1, y_2 \cdot z_1, z_2 \cdot z_1 \end{bmatrix}$ • has inverse $[C_2^1]^{-1} = [C_2^1]^T = C_1^2$

EE 570: Location and Navigation

Review

Rotation matrix, C_2^1

- describes orientation of frame 2 with respect to frame 1
- is of size 3×3

• is constructed via
$$[x_2^1, y_2^1, z_2^1] = \begin{bmatrix} x_2 \cdot x_1, & y_2 \cdot x_1, & z_2 \cdot x_1 \\ x_2 \cdot y_1, & y_2 \cdot y_1, & z_2 \cdot y_1 \\ x_2 \cdot z_1, & y_2 \cdot z_1, & z_2 \cdot z_1 \end{bmatrix}$$

• has inverse $[C_2^1]^{-1} = [C_2^1]^T = C_1^2$
• is of the form $\begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Review

Rotation matrix, C_2^1

- describes orientation of frame 2 with respect to frame 1
- is of size 3×3
- is constructed via $\begin{bmatrix} x_1^1, y_2^1, z_2^1 \end{bmatrix} = \begin{bmatrix} x_2 \cdot x_1, y_2 \cdot x_1, z_2 \cdot x_1 \\ x_2 \cdot y_1, y_2 \cdot y_1, z_2 \cdot y_1 \\ x_2 \cdot z_1, y_2 \cdot z_1, z_2 \cdot z_1 \end{bmatrix}$ • has inverse $\begin{bmatrix} C_2^1 \end{bmatrix}^{-1} = \begin{bmatrix} C_2^1 \end{bmatrix}^T = C_1^2$ • is of the form $\begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} = R_{z,\theta}$ for the basic (elementary) rotation about the *z*-axis by angle θ

Review

Rotation matrix, C_2^1

- describes orientation of frame 2 with respect to frame 1
- is of size 3×3
- is constructed via $\begin{bmatrix} x_2^1, y_2^1, z_2^1 \end{bmatrix} = \begin{bmatrix} x_2 \cdot x_1, y_2 \cdot x_1, z_2 \cdot x_1 \\ x_2 \cdot y_1, y_2 \cdot y_1, z_2 \cdot y_1 \\ x_2 \cdot z_1, y_2 \cdot z_1, z_2 \cdot z_1 \end{bmatrix}$
- has inverse $[C_2^1]^{-1} = [C_2^1]^T = C_1^2$ • is of the form $\begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{bmatrix} = R_{z,\theta}$ for the basic (elementary) rotation about the *z*-axis by angle θ similarly,

$$R_{\mathbf{x},\theta} = \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \cos(\theta) & -\sin(\theta) \\ \mathbf{0} & \sin(\theta) & \cos(\theta) \end{bmatrix}, \quad R_{\mathbf{y},\theta} = \begin{bmatrix} \cos(\theta) & \mathbf{0} & \sin(\theta) \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \\ -\sin(\theta) & \mathbf{0} & \cos(\theta) \end{bmatrix}$$

Review

Rotation matrix, C_2^1

- describes orientation of frame 2 with respect to frame 1
- is of size 3×3
- is constructed via $[x_2^1, y_2^1, z_2^1] = \begin{bmatrix} x_2 \cdot x_1, y_2 \cdot x_1, z_2 \cdot x_1 \\ x_2 \cdot y_1, y_2 \cdot y_1, z_2 \cdot y_1 \\ x_2 \cdot z_1, y_2 \cdot z_1, z_2 \cdot z_1 \end{bmatrix}$
- has inverse $[C_2^1]^{-1} = [C_2^1]^T = C_1^2$ • is of the form $\begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{bmatrix} = R_{z,\theta}$ for the basic

(elementary) rotation about the z-axis by angle θ similarly,

• recoordinatizes vector \vec{v}^2 in frame 1 via $\vec{v}^1 =$

Review

Rotation matrix, C_2^1

- describes orientation of frame 2 with respect to frame 1
- is of size 3×3
- is constructed via $[x_2^1, y_2^1, z_2^1] = \begin{bmatrix} x_2 \cdot x_1, y_2 \cdot x_1, z_2 \cdot x_1 \\ x_2 \cdot y_1, y_2 \cdot y_1, z_2 \cdot y_1 \\ x_2 \cdot z_1, y_2 \cdot z_1, z_2 \cdot z_1 \end{bmatrix}$
- has inverse $[C_2^1]^{-1} = [C_2^1]^T = C_1^2$ • is of the form $\begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{bmatrix} = R_{z,\theta}$ for the basic

(elementary) rotation about the *z*-axis by angle θ similarly,

• recoordinatizes vector \vec{v}^2 in frame 1 via $\vec{v}^1 = C_2^1 \vec{v}^2$

() Rotation matrices use $3 \times 3 = 9$ parameters

- Rotation matrices use $3 \times 3 = 9$ parameters
 - these 9 parameters are not independent

- **(** Rotation matrices use $3 \times 3 = 9$ parameters
 - these 9 parameters are not independent
 - 3 constraints due to columns being orthogonal
 - 3 constraints due to columns being unit vectors

- **()** Rotation matrices use $3 \times 3 = 9$ parameters
 - these 9 parameters are not independent
 - 3 constraints due to columns being orthogonal
 - 3 constraints due to columns being unit vectors
 ⇒ 3 free variables exist ⇒ need only 3 parameters to describe orientation

- Rotation matrices use $3 \times 3 = 9$ parameters
 - these 9 parameters are not independent
 - 3 constraints due to columns being orthogonal
 - 3 constraints due to columns being unit vectors
 ⇒ 3 free variables exist ⇒ need only 3 parameters to describe orientation
- Examples of 3-parameter descriptions:
 - fixed-axis rotations (e.g., Roll-Pitch-Yaw/ZYX)
 - relative-axis (Euler) rotations (e.g., ZYZ, ZYX)
 - angle and axis

- Rotation matrices use $3 \times 3 = 9$ parameters
 - these 9 parameters are not independent
 - 3 constraints due to columns being orthogonal
 - 3 constraints due to columns being unit vectors
 ⇒ 3 free variables exist ⇒ need only 3 parameters to describe orientation
- Examples of 3-parameter descriptions:
 - fixed-axis rotations (e.g., Roll-Pitch-Yaw/ZYX)
 - relative-axis (Euler) rotations (e.g., ZYZ, ZYX)
 - angle and axis
- Quaternions use 4 parameters

When one wants to rotate a coordinate frame about an axis, that axis can be in a fixed-frame or relative-frame.

Fixed-axis rotation - rotation performed about x-, y-, or z-axis of initial (and fixed) coordinate frame

When one wants to rotate a coordinate frame about an axis, that axis can be in a fixed-frame or relative-frame.

- Fixed-axis rotation rotation performed about x-, y-, or z-axis of initial (and fixed) coordinate frame
- Relative-axis rotation rotation performed about x-, y-, or z-axis of current (and relative) coordinate frame
 - sometimes referred to as Euler rotations

When one wants to rotate a coordinate frame about an axis, that axis can be in a fixed-frame or relative-frame.

- Fixed-axis rotation rotation performed about x-, y-, or z-axis of initial (and fixed) coordinate frame
- **2** Relative-axis rotation rotation performed about x-, y-, or z-axis of current (and relative) coordinate frame
 - sometimes referred to as Euler rotations

Resulting orientation is quite different!

Example sequence of three consecutive rotations to compare fixed versus relative.

- Step 1: Rotate about the *z*-axis by ψ
- **Step 2**: Rotate about the *y*-axis by θ
- **Step 3:** Rotate about the *x*-axis by ϕ

Relative-axis Rotation

Fixed-axis Rotation

		Fixed vs Relative				
Kevin We	deward, Aly El-O	sery (NMT)	EE 570: Location and Navigat	ion	January 28, 2016	5 7/16

Relative-axis Rotation Rotate about *z*₁

Fixed-axis Rotation Rotate about z_1

		Fixed vs Relative				
Kevin Wed	eward, Aly El-Os	sery (NMT)	EE 570: Location and Navigat	ion	January 28, 2016	7 / 16

Relative-axis Rotation Rotate about *y*₂

Fixed-axis Rotation Rotate about y₁

		Fixed vs Relativ				
Kevin Wed	eward, Aly El-Os	ery (NMT)	EE 570: Location and Navigat	ion	January 28, 2016	7 / 16

Relative-axis Rotation Rotate about *x*₃

Fixed-axis Rotation Rotate about x₁

Construct rotation matrix that represents composition of relative-axis rotations.

- Start with last rotation $C_4^3 = [x_4^3, y_4^3, z_4^3] = R_{x,\phi}$, and recall columns are vectors
- To re-coordinatize vectors x_4^3, y_4^3, z_4^3 in frame 2, multiply each by $C_3^2 = R_{y,\theta}$.

Construct rotation matrix that represents composition of relative-axis rotations.

- Start with last rotation $C_4^3 = [x_4^3, y_4^3, z_4^3] = R_{x,\phi}$, and recall columns are vectors
- To re-coordinatize vectors x_4^3, y_4^3, z_4^3 in frame 2, multiply each by $C_3^2 = R_{y,\theta}$.

In matrix form, $[C_3^2 x_4^3, C_3^2 y_4^3, C_3^2 z_4^3] = [x_4^2, y_4^2, z_4^2] = C_4^2$

Construct rotation matrix that represents composition of relative-axis rotations.

- Start with last rotation $C_4^3 = [x_4^3, y_4^3, z_4^3] = R_{x,\phi}$, and recall columns are vectors
- To re-coordinatize vectors x_4^3, y_4^3, z_4^3 in frame 2, multiply each by $C_3^2 = R_{y,\theta}$.

In matrix form, $[C_3^2 x_4^3, C_3^2 y_4^3, C_3^2 z_4^3] = [x_4^2, y_4^2, z_4^2] = C_4^2$

where it is noted that $[C_3^2 x_4^3, C_3^2 y_4^3, C_3^2 z_4^3] = C_3^2 [x_4^3, y_4^3, z_4^3] = C_3^2 C_4^3 = C_4^2$

- To re-coordinatize vectors x_4^2, y_4^2, z_4^2 in frame 1, multiply each by $C_2^1=R_{z,\psi}$
 - $\Rightarrow [C_2^1 x_4^2, C_2^1 y_4^2, C_2^1 z_4^2] = C_2^1 [x_4^2, y_4^2, z_4^2] = C_2^1 C_4^2 = C_2^1 C_3^2 C_4^3 = C_4^1$

• To re-coordinatize vectors x_4^2, y_4^2, z_4^2 in frame 1, multiply each by $C_2^1=R_{z,\psi}$

$$\Rightarrow [C_2^1 x_4^2, C_2^1 y_4^2, C_2^1 z_4^2] = C_2^1 [x_4^2, y_4^2, z_4^2] = C_2^1 C_4^2 = C_2^1 C_3^2 C_4^3 = C_4^1$$

• Combined sequence of relative-rotations yields

$$C_4^1 = C_2^1 C_3^2 C_4^3 = \underbrace{R_{z,\psi}}_{1st} \underbrace{R_{y,\theta}}_{2nd} \underbrace{R_{x,\phi}}_{3rd}$$

• To re-coordinatize vectors x_4^2, y_4^2, z_4^2 in frame 1, multiply each by $C_2^1=R_{z,\psi}$

$$\Rightarrow [C_2^1 x_4^2, C_2^1 y_4^2, C_2^1 z_4^2] = C_2^1 [x_4^2, y_4^2, z_4^2] = C_2^1 C_4^2 = C_2^1 C_3^2 C_4^3 = C_4^1$$

• Combined sequence of relative-rotations yields

$$C_4^1 = C_2^1 C_3^2 C_4^3 = \underbrace{R_{z,\psi}}_{1st} \underbrace{R_{y,\theta}}_{2nd} \underbrace{R_{x,\phi}}_{3rd}$$

- Note order is left to right!
- Additional relative-rotations represented by right (post) matrix multiplies.

			Relative-axis Rotations			
Kevin Wed	eward, Aly El-Os	ery (NMT)	EE 570: Location and Navigat	ion	January 28, 201	69/16

For the relative–axis rotations $Z(\psi)$, $Y(\theta)$, $X(\phi)$

$$\begin{split} C_4^1 &= C_2^1 C_3^2 C_4^3 \\ &= R_{z,\psi} R_{y,\theta} R_{x,\phi} \\ &= \begin{bmatrix} \cos \psi & -\sin \psi & 0\\ \sin \psi & \cos \psi & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & 0 & \sin \theta\\ 0 & 1 & 0\\ -\sin \theta & 0 & \cos \theta \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos \phi & -\sin \phi\\ 0 & \sin \phi & \cos \phi \end{bmatrix} \\ &= \begin{bmatrix} c_\theta c_\psi & c_\psi s_\theta s_\phi - c_\phi s_\psi & c_\phi c_\psi s_\theta + s_\phi s_\psi\\ c_\theta s_\psi & c_\phi c_\psi + s_\theta s_\phi s_\psi & c_\phi s_\theta s_\psi - c_\psi s_\phi\\ -s_\theta & c_\theta s_\phi & c_\theta c_\phi \end{bmatrix} \end{split}$$

where the notation $c_{\beta} = \cos(\beta)$ and $s_{\beta} = \sin(\beta)$ are introduced

			Relative-axis Rotations			
Kevin Wed	eward, Aly El-Os	ery (NMT)	EE 570: Location and Navigati	.on	January 28, 2016	10 / 16

- Development of equivalent rotation matrix for sequence of fixed-axis rotations will make use of rotation matrix's ability to rotate a vector.
- A vector \vec{p} can be rotated into a new vector via $R\vec{p}$, both in the same coordinate frame.
- We'll once again consider the sequence $Z(\psi)$, $Y(\theta)$, $X(\phi)$ aka Yaw-Pitch-Roll, but this time about fixed-axes.

• First *z*-axis rotation rotates frame {1}'s basis vectors to become frame {2}'s basis vectors $[\vec{x}_2^1, \vec{y}_2^1, \vec{z}_2^1] = R_{z,\psi}[\vec{x}_1^1, \vec{y}_1^1, \vec{z}_1^1] = R_{z,\psi}$

 Review
 Orientation
 Fixed vs Relative
 Relative-axis Rotations
 Fixed-axis Rotations
 Example
 Summary

 Kevin Wedeward, Aly EL-Osery
 (NMT)
 EE 570: Location and Navigation
 January 28, 2016
 12 / 16

- First *z*-axis rotation rotates frame {1}'s basis vectors to become frame {2}'s basis vectors $[\vec{x}_2^1, \vec{y}_2^1, \vec{z}_2^1] = R_{z,\psi}[\vec{x}_1^1, \vec{y}_1^1, \vec{z}_1^1] = R_{z,\psi}$
- Second *y*-axis rotation rotates frame {2}'s basis vectors to become frame {3}'s basis vectors $[\vec{x}_{3}^{1}, \vec{y}_{3}^{1}, \vec{z}_{3}^{1}] = R_{y,\theta}[\vec{x}_{2}^{1}, \vec{y}_{2}^{1}, \vec{z}_{2}^{1}] = R_{y,\theta}R_{z,\psi}$

- First *z*-axis rotation rotates frame {1}'s basis vectors to become frame {2}'s basis vectors $[\vec{x}_2^1, \vec{y}_2^1, \vec{z}_1^2] = R_{z,\psi}[\vec{x}_1^1, \vec{y}_1^1, \vec{z}_1^1] = R_{z,\psi}$
- Second *y*-axis rotation rotates frame {2}'s basis vectors to become frame {3}'s basis vectors $[\vec{x}_{3}^{1}, \vec{y}_{3}^{1}, \vec{z}_{3}^{1}] = R_{y,\theta}[\vec{x}_{2}^{1}, \vec{y}_{2}^{1}, \vec{z}_{2}^{1}] = R_{y,\theta}R_{z,\psi}$
- Third *x*-axis rotation rotates frame {3}'s basis vectors to become frame {4}'s basis vector $[\vec{x}_{4}^{1}, \vec{y}_{4}^{1}, \vec{z}_{4}^{1}] = R_{x,\phi}[\vec{x}_{3}^{1}, \vec{y}_{3}^{1}, \vec{z}_{3}^{1}] = R_{x,\phi}R_{y,\theta}R_{z,\psi}$

- First *z*-axis rotation rotates frame {1}'s basis vectors to become frame {2}'s basis vectors $[\vec{x}_2^1, \vec{y}_2^1, \vec{z}_1^2] = R_{z,\psi}[\vec{x}_1^1, \vec{y}_1^1, \vec{z}_1^1] = R_{z,\psi}$
- Second *y*-axis rotation rotates frame {2}'s basis vectors to become frame {3}'s basis vectors $[\vec{x}_{3}^{1}, \vec{y}_{3}^{1}, \vec{z}_{3}^{1}] = R_{y,\theta}[\vec{x}_{2}^{1}, \vec{y}_{2}^{1}, \vec{z}_{2}^{1}] = R_{y,\theta}R_{z,\psi}$
- Third *x*-axis rotation rotates frame {3}'s basis vectors to become frame {4}'s basis vector $[\vec{x}_{4}^{1}, \vec{y}_{4}^{1}, \vec{z}_{4}^{1}] = R_{x,\phi}[\vec{x}_{3}^{1}, \vec{y}_{3}^{1}, \vec{z}_{3}^{1}] = R_{x,\phi}R_{y,\theta}R_{z,\psi}$ $\Rightarrow C_{4}^{1} = \underbrace{R_{x,\phi}}_{3rd} \underbrace{R_{y,\theta}}_{2rd} \underbrace{R_{z,\psi}}_{1st}$

 Review
 Orientation
 Fixed vs Relative
 Relative-axis Rotations
 Fixed-axis Rotations
 Example
 Summary

 Kevin Wedeward, Aly EL-Osery
 (NMT)
 EE 570: Location and Navigation
 January 28, 2016
 12 / 16

- First *z*-axis rotation rotates frame {1}'s basis vectors to become frame {2}'s basis vectors $[\vec{x}_2^1, \vec{y}_2^1, \vec{z}_2^1] = R_{z,\psi}[\vec{x}_1^1, \vec{y}_1^1, \vec{z}_1^1] = R_{z,\psi}$
- Second *y*-axis rotation rotates frame {2}'s basis vectors to become frame {3}'s basis vectors $[\vec{x}_{3}^{1}, \vec{y}_{3}^{1}, \vec{z}_{3}^{1}] = R_{y,\theta}[\vec{x}_{2}^{1}, \vec{y}_{2}^{1}, \vec{z}_{2}^{1}] = R_{y,\theta}R_{z,\psi}$
- Third *x*-axis rotation rotates frame {3}'s basis vectors to become frame {4}'s basis vector $[\vec{x}_{4}^{1}, \vec{y}_{4}^{1}, \vec{z}_{4}^{1}] = R_{x,\phi}[\vec{x}_{3}^{1}, \vec{y}_{3}^{1}, \vec{z}_{3}^{1}] = R_{x,\phi}R_{y,\theta}R_{z,\psi}$ $\Rightarrow C_{4}^{1} = \underbrace{R_{x,\phi}}_{3rd} \underbrace{R_{y,\theta}}_{2rd} \underbrace{R_{z,\psi}}_{1st}$
- Note order is right to left!
- Additional fixed-rotations represented by left (pre) matrix multiplies.

				Fixed-a	axis Rotations		
Kevin Wed	eward, Aly El-O	sery (NMT)	EE 570: Location and Navigat	ion		January 28, 2016	12 / 16

For the fixed-axis rotations $Z(\psi)$, $Y(\theta)$, $X(\phi)$

$$\begin{split} C_4^1 &= R_{x,\phi} R_{y,\theta} R_{z,\psi} \\ &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} c_\theta c_\psi & -c_\theta s_\psi & s_\theta \\ c_\psi s_\theta s_\phi + c_\phi s_\psi & c_\phi c_\psi - s_\theta s_\phi s_\psi & -c_\theta s_\phi \\ s_\phi s_\psi - c_\phi c_\psi s_\theta & c_\psi s_\phi + c_\phi s_\theta s_\psi & c_\theta c_\phi \end{bmatrix} \end{split}$$

 Review
 Orientation
 Fixed vs
 Relative
 Relative-axis
 Rotations
 Fixed-axis
 Rotations
 Example
 Summary

 Kevin Wedeward, Aly El-Osery
 (NMT)
 EE 570: Location and Navigation
 January 28, 2016
 13 / 16

For the fixed-axis rotations $Z(\psi)$, $Y(\theta)$, $X(\phi)$

$$\begin{aligned} C_4^1 &= R_{x,\phi} R_{y,\theta} R_{z,\psi} \\ &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} c_\theta c_\psi & -c_\theta s_\psi & s_\theta \\ c_\psi s_\theta s_\phi + c_\phi s_\psi & c_\phi c_\psi - s_\theta s_\phi s_\psi & -c_\theta s_\phi \\ s_\phi s_\psi - c_\phi c_\psi s_\theta & c_\psi s_\phi + c_\phi s_\theta s_\psi & c_\theta c_\phi \end{bmatrix} \end{aligned}$$

which is quite different than the result for the same sequence of relative-axis rotations

				Fixed-a	axis Rotations		
Kevin Wed	eward, Aly El-Os	sery (NMT)	EE 570: Location and Navigat	ion		January 28, 2016	13 / 16

Find the rotation matrix representing the orientation of the coordinate frame that results from the following sequence of rotations.

 Review
 Orientation
 Fixed vs Relative
 Relative-axis Rotations
 Fixed-axis Rotations
 Example
 Summary

 Kevin Wedeward, Aly El-Osery
 (NMT)
 EE 570: Location and Navigation
 January 28, 2016
 14 / 16

Find the rotation matrix representing the orientation of the coordinate frame that results from the following sequence of rotations.

() Rotate about fixed *x*-axis by ϕ

 Review
 Orientation
 Fixed vs Relative
 Relative-axis Rotations
 Fixed-axis Rotations
 Example
 Summary

 Kevin Wedeward, Aly El-Osery
 (NMT)
 EE 570: Location and Navigation
 January 28, 2016
 14 / 16

Find the rotation matrix representing the orientation of the coordinate frame that results from the following sequence of rotations.

- Rotate about fixed *x*-axis by ϕ
- **2** Rotate about fixed z-axis by θ

 Review
 Orientation
 Fixed vs Relative
 Relative-axis Rotations
 Fixed-axis Rotations
 Example
 Summary

 Kevin Wedeward, Aly El-Osery
 (NMT)
 EE 570: Location and Navigation
 January 28, 2016
 14 / 16

Example

January 28, 2016

14 / 16

Find the rotation matrix representing the orientation of the coordinate frame that results from the following sequence of rotations.

EE 570: Location and Navigation

- Rotate about fixed x-axis by ϕ
- **2** Rotate about fixed z-axis by θ

Kevin Wedeward, Aly El-Osery (NMT)

③ Rotate about current x-axis by ψ

Example

January 28, 2016

14 / 16

Find the rotation matrix representing the orientation of the coordinate frame that results from the following sequence of rotations.

EE 570: Location and Navigation

- **()** Rotate about fixed *x*-axis by ϕ
- **2** Rotate about fixed z-axis by θ

Kevin Wedeward, Aly El-Osery (NMT)

- ullet Rotate about current x–axis by ψ
- Rotate about current z-axis by α

Example

January 28, 2016

14 / 16

Find the rotation matrix representing the orientation of the coordinate frame that results from the following sequence of rotations.

EE 570: Location and Navigation

- **()** Rotate about fixed *x*-axis by ϕ
- 2 Rotate about fixed z-axis by θ
- **③** Rotate about current x-axis by ψ
- **④** Rotate about current z-axis by α
- Solution Rotate about fixed y-axis by β

Kevin Wedeward, Aly El-Osery (NMT)

Find the rotation matrix representing the orientation of the coordinate frame that results from the following sequence of rotations.

- Rotate about fixed *x*-axis by ϕ
- **2** Rotate about fixed z-axis by θ
- **③** Rotate about current *x*-axis by ψ
- Rotate about current z-axis by α
- Solution Rotate about fixed y-axis by β
- **(**) Rotate about current y-axis by γ

Fixed vs Relative Rotations

- Fixed-axis Rotations
 - Multiply on the LEFT
 - $C_{final} = R_n \dots R_2 R_1$

Fixed-axis Rotation

$$C_{resultant} = R_{fixed} C_{original}$$

 Review
 Orientation
 Fixed vs. Relative
 Relative-axis. Rotations
 Fixed-axis. Rotations
 Example
 Summary

 Kevin Wedeward, Aly El-Osery
 (NMT)
 EE 570: Location and Navigation
 January 28, 2016
 15 / 16

- Fixed-axis Rotations
 - Multiply on the LEFT
 - $C_{final} = R_n \dots R_2 R_1$

Fixed-axis Rotation

 $C_{resultant} = R_{fixed} C_{original}$

- Relative-axis (Euler) Rotations
 - Multiply on the **RIGHT**
 - $C_{final} = R_1 R_2 \dots R_n$

Relative-axis Rotation

 $C_{resultant} = C_{original} R_{relative}$

 Review
 Orientation
 Fixed vs Relative
 Relative-axis Rotations
 Fixed-axis Rotations
 Example
 Summary

 Kevin Wedeward, Aly El-Osery
 (NMT)
 EE 570: Location and Navigation
 January 28, 2016
 15 / 16

- Fixed-axis Rotations
 - Multiply on the LEFT
 - $C_{final} = R_n \dots R_2 R_1$

Fixed-axis Rotation

 $C_{resultant} = R_{fixed} C_{original}$

- Relative-axis (Euler) Rotations
 - Multiply on the RIGHT
 - $C_{final} = R_1 R_2 \dots R_n$

Relative-axis Rotation

 $C_{resultant} = C_{original} R_{relative}$

Two types of rotations can be composed noting order of multiplication

						Summary
Kevin Wede	ward, Aly El-Ose	ry (NMT)	EE 570: Location and Navigatio		January 28, 2016	15 / 16

 Review
 Orientation
 Fixed vs Relative
 Relative-axis Rotations
 Fixed-axis Rotations
 Example
 Summary

 Kevin Wedeward, Aly El-Osery
 (NMT)
 EE 570: Location and Navigation
 January 28, 2016
 16 / 16