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1 Review

Review

Rotation Matrices R, C
e Notation to be adopted:
— C represents an orientation
— R represents a rotation
e Sequence of rotations can be composed via multiplication of rotation matrices

— rotations about relative axis = post-/right-multiply
Ctinal = Cinitial R

— rotations about fixed axis = pre-/left-multiply
Ctinal = RCinitial

e 3 x3 =9 elements with 6 constraints = 3 parameters are sufficient to describe
orientation




Review - Example

What is orientation of ECEF
frame resolved in ECI frame, t.e.

Cci?
‘ cosf;e —sinb;, 0
C:=R.p, = |sinbe cosbi 0
0 0 1

Vernal Equinox

What is 6,.? angle from frame {i} to frame {e}; here 0;c = wic(t — to)

Review - Example

R

Vernal Equinox

What is the nav frame resolved in the ECEF frame, i.e. C5?

2 Roll-Pitch-Yaw Angles

Roll-Pitch-Yaw Angles
Roll-Pitch-Yaw angles

e often used to represent orientation of aircraft

e three angles (¢, 0, v) that represent the sequence of rotations about the x—, y— and
z—axes of a fixed frame

e given angles (¢, 0, 1), equivalent rotation matrix can be found via

Crpy = R, yRyoRys

_c¢ -5y 0 co 0 sp 1 0 0
= S¢ Cy 0 0 1 0 0 C¢ —8¢
0 0 1 —Sp 0 Co 0 S¢p Cop

_0901/, CpSSp — CpSy  ChpCypSe + S¢Sy
= |CoSy CpCy + S9SpSy  CpSeSy — CySe
—Sp CoS¢ CoCy

Roll-Pitch-Yaw Angles

Given a rotation matrix that describes a desired orientation

Cii Ci2 Cis
Caesired = [C21 Caz  Cas
C31 Csp Css



Roll-Pitch-Yaw angles (¢, 6, ¥) can be found (the inverse solution) by equating combina-

tions of terms

CoCy | CySpSe — CpSy  CeCySo + S¢Sy Cu| Cia Ci3
CoSy | CoCyp + S08¢pSy  CpSeSy — CypSe | = ||Car| Caa Cos
—sg CoSp CoCy C31 O3 Cs3
021 CHSqp
- = = tan(¢
011 CoCy ( )
Roll-Pitch-Yaw Angles
CHCyy  CoypSeSp — CpSyp  CpCoyhSh + S¢pSqp 011 012 013
CoSy  CoCy + 50545y  CpSoSy — CypSp| = [Ca1 Ca Cos
0 Ca1
032 CoS¢
232 _ 9% _ gan(g)
033 CpCy
CoCy  CypSPSp — CpSeyy  CpCypSo + S¢Sy Ci1 Cia Ci3
CoSy  CoCy + 8954Sy  CpS9Sy — CySe| = | Car Cog  Cag
—%6 C1] [Ca] [Cas
~C31 —(—s0) 59

= = — = tan(0)
V05 + 03 \/cg(sfb +c) @

3 Angle-Axis

Angle-Axis
Angle-Axis
e one rotation about general axis will be used to describe orientation, so does not have
the “rotation in sequence” issue
e rotation matrix C' can be realized via rotation away from initial frame by angle 6 about
appropriately chosen axis k= [k1, ko, kg]T of rotation
e assume k is a unit vector

Angle-Axis

Rotation matrix can be derived by rotating one of the
principal axis (z, y, or z) onto the vector k, then per-
forming a rotation of #, and finally undoing the original
changes




Angle-Axis

. ko
sina =
k2 + k2
Noti CcoSs « k1
° = —F—
oting k% T k%

e it can be shown (by composing rotations) that

k%VG + co k1kaVg — k3sg  k1k3Vp + kase
Ry g = |k1k2Vo + k3se k3Vp + co koksVy — k1sg (1)
k1ksVy — kasg  koksVp + k1se k3Vp + cg

where V=1 — ¢y.

Angle-Axis - Alternate Approach
Alternate approach to development of angle-axis is to relate rotation matrix to its equiv-

alent angle-axis pair by

= — ph0(t)
Ry oy = e”
where
skew-symmetric
0 —ks ko
R = [k‘X] = k3 0 —k‘1
—ky Kk 0
. . . . . - T
is the skew-symmetric matrix version of the axis vector k = [k:l ko k‘3] . Note:
T

k' = —k.

Angle-Axis - Rodrigues Formula
e Using Taylor expansion of matrix-exponential

K20%(t)  K303(t)
ST TR

. _ KkO(t) _

Ry =¢ =T+ kO(t) +
which, after a bit of manipulation (recalling Taylor series of sine and cosine and noting
k3 = —k), can be shown to be
Rodrigues Formula

Ry gy =L +sin(0(t))r + [1 — cos(0(t))] K>

e Multiplying out the rhs of the above equation gives us the same rotation matrix as
that in Eq. 1.
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Angle-Axis to Rotation Matrix
Desired rotation matrix to (k, #) - the inverse problem

K3V + co k1koVy — kssg  ki1ksVy + kasg i1 Ti2  T13
Ry o = [k1k2Vy + k3se k3Vp +co ka2k3Vg —kisg| = |r21 122 723| = Rdesired
kiksVy — kase  kak3Vp + kisg k2Vo + co T3l T32 T33

-
e find angle-axis pair (k, 0) needed to realize desired rotation matrix
e look at trace of rotation matrix and recall Vy =1 — cosé

Tr (R,;,a) = [k7 + k3 + k3] (1 —cos6) + 3cosf =1+ 2cosf

L TT(RE,G)_l 1 (7“11+7‘22+7"33—1>
——— | =cos

= 0 = cos™
2 2
14
Angle-Axis to Rotation Matrix
Now for the axis of rotation; a review of the structure suggests
r32 — o3 = 2k15¢
T13 — r31 = 2k2se
ro1 — r12 = 2k3se
L 1 |72 —r2s
= k= |ka| = 57— |[r13— 731
k 259
3 21 —T12
15
Angle-Axis - Example
A satellite orbiting the earth can be made to point it's telescope at a desired star by
performing the following motions
The Hubble telescope
1. Rotate about it's z-axis by —30°, then
2. Rotate about it's new z-axis by 50°, then finally What
3. Rotate about it's initial y-axis by 40°.
is its final orientation wrt the starting orientation?
CHELY = R(g,000) Bz, —300) B(z,500)
0.766044 0 0.642788 1 0 0 0.642788 —0.766044 0
= 0 1 0 0 0.866025 0.5 0.766044 0.642788 9]
—0.642788 0 0.766044 0 —0.5 0.866025 0 0 1
0.246202 —0.793412 0.55667
= | 0.663414 0.663414 0.5
—0.706588 0.246202 0.246202
16
Angle-Axis - Example
e In order to save energy it is desirable to perform this change in orientation with only
one rotation — How?
e Perform a single, equivalent angle-axis rotation with
start
) Tr (Cfinal) -1 i
0 = cos =176.5
2
R 1 T3 — T'93 —0.130495
k= 2e, |T18 T = 0.649529
s
o T21 — T12 0.749055 17



Angle-Axis - Three Parameters
Angle-Axis representation can be made three parameters via

— —

K =0k

such that B
0= |k

and ~
- K

k= —
K]

4 Quaternions

Quaternions - Singularity Problems

Euler angles, RPY angles and angle-axis consist three elements, but they are not unique,
e.g., there are orientations that are represented by different Euler angles, RYP angles and
angle-axis.

Quaternion

e Quaternions are 4-element representation of the rotation vectors where the additional
element makes quaternions unique.

e With 4 elements quaternions have the lowest dimensionality possible for a globally
nonsingular attitude representation.

Quaternions
Given an angle-axis pair (6, E) or the corresponding rotation vector K =0k, a quaternion
is defined as
ds

g= |:QS:| _ qx _ [fos(g):|
q qy ksin($)
qz
where

g, = cos(g) is the scalar component

o (= ¢, qy, ¢)]" = Igsin(g) is the vector component

o lal = \Ja a2+ +a2 = \[(cos($))? + (kasin($))? + (kasin(5))? + (ks sin(5))? =
1 = a unit quaternion

Quaternions
Quaternions can be used to describe orientation and compose rotations like rotation
matrices
a ~a
° Cb < qy ‘
¢ (s =RRiRs = (=000 ®q3
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Quaternions - Properties

e Quaternion inverse or conjugate

ds
* —qx
—qy
—4z

e Vector transformation (change of coordinates) Define a “pure” vector

then a vector ¥ written in the p-frame may be transformed to the i-frame using

V=qgeireq !

Quaternions - Multiplication
Quaternion multiplication - first type ®

_ _ _ _ 1= qsPs — (T ﬁ
r=qQp=|9®|p = = S S o
7ep [q ]p qsp +Dsq+q XD

where implementation via matrix multiplication achieved by defining

qs —qx - qy —q:
qx qs —qz dy
qy 4z ds —qx
4> —Qy Qx qs

[q2] =

Note multiplication does not commute.

Quaternions - Multiplication
Quaternion multiplication - second type ® (useful to re-order multiplication when certain
factorizations and coordinatizations needed)
_ _ _ _ 1 qsPs — (7 ﬁ
r=qep=gep=| _ 7x 5
7] 4P+ ps@ =17 % P
where

and

qz Qy —qx qs

Quaternion to Rotation Matrix
Rotation matrix from given quaternion

Rq = (¢ — |@1*)T + 2q,[qx] + 2q¢" =

Gr+a;—a - 200y —4sq:)  2(20s + asay)
= | 2(qety +4s¢:) G- +a - 2(qyq: — 4sqa)
2(¢0q: — 4sqy)  2(qye: +4502) G -G —a+ ¢




Quaternion from Rotation Matrix
Quaternion from given rotation matrix

[¢?+a2—ay — ¢ 2(¢ey — 0s9=)  2(429: + 4s4y)
Ri=| 20ty +4s¢:) G- +a -0  2(qq: — qsqa)
| 2(429: — 4sqy) 2(qyq: + 4s92) G —aE— @+

i1 Ti2 T3
= |r21 722 T23| = Rgesired
731 T32 T33

32 — 723

1 - 1
= qs = 3V1+ru+ratrand §= - (13 —rs
T21 — T12

Quaternions - |dentities
Identities for quaternions

[7'®] =[] " = [g®]"
7 '®] = [g®] " = [g&]"
[I®] = e3lke] — cos(0/2)T + %[/2@] Sin9(;92/2)

[q®] = ezlke] — cos(6/2)T + %[iﬂ@] Sin9(/92/2)

lizs ™ = fas] " asl = g 71 ]

Quaternions - |dentities

IRPOT=(qRP)OT=q4(pRT)
I®PRT=((®P)®T=7®(P®T)
(@®P)RF#q® (PR T)
((@p)®@T#qR (pP®T)

The End
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