EE 570: Location and Navigation Navigation Mathematics: Translation

Kevin Wedeward Aly El-Osery

Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA

In Collaboration with Stephen Bruder Electrical and Computer Engineering Department Embry-Riddle Aeronautical Univesity Prescott, Arizona, USA

February 4, 2016

Vector Notation for Translation

Kevin Wedeward, Aly El-Osery (NMT)

Translation Between More Than Two Coordinate Frame

Example

EE 570: Location and Navigation

February 4, 2016 1 / 15

2 Translation Between More Than Two Coordinate Frames

Vector Notation for Translation

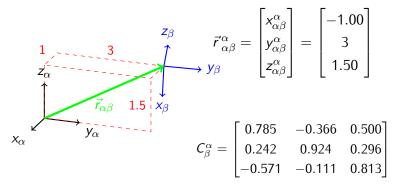
Kevin Wedeward, Aly El-Osery (NMT)

Translation Between More Than Two Coordinate Frame

Example

EE 570: Location and Navigation

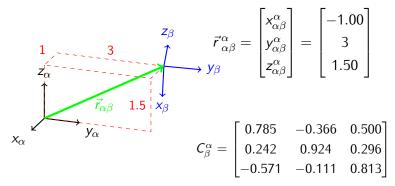
February 4, 2016 2 / 15


Translation Between Frames

3 / 15

Define the vector $\vec{r}_{\alpha\beta}$ from the origin of $\{\alpha\}$ to the origin of $\{\beta\}$.

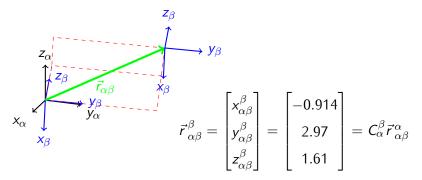
• specifies translation between frames


 Vector Notation for Translation
 Translation Between More Than Two Coordinate Frames
 Ex

 Kevin Wedeward, Aly EL-Osery
 (NMT)
 EE 570: Location and Navigation
 February 4, 2016

Define the vector $\vec{r}_{\alpha\beta}$ from the origin of $\{\alpha\}$ to the origin of $\{\beta\}$.

• specifies translation between frames



Now have means to describe rotation and translation between coordinate frames.

Vector Notation for Translation	Translation Between More Than Two Coordinate Frames		Example
Kevin Wedeward, Aly El-Osery (NMT)	EE 570: Location and Navigation	February 4, 2016	3 / 15

• Resolve, i.e., coordinatize, $\vec{r}_{\alpha\beta}$ wrt frame $\{\beta\}$.

Same vector, so same "direction" and length.

Vector Notation for Translation	Translation Between More Than Two Co	oordinate Frames	Example
Kevin Wedeward, Aly El-Osery (NMT)	EE 570: Location and Navigation	February 4, 2016	4 / 15

Reverse vector \vec{r} , i.e., now from origin of $\{\beta\}$ to origin of $\{\alpha\}$.

notation:

Vector Notation for Translation

Kevin Wedeward, Aly El-Osery (NMT)

Translation Between More Than Two Coordinate Frame

Example

EE 570: Location and Navigation

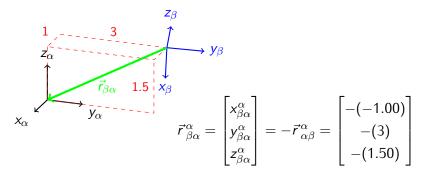
Reverse vector \vec{r} , i.e., now from origin of $\{\beta\}$ to origin of $\{\alpha\}$.

• notation: $\vec{r}_{\beta\alpha} =$

Vector Notation for Translation

Kevin Wedeward, Aly El-Osery (NMT)

Translation Between More Than Two Coordinate Frame

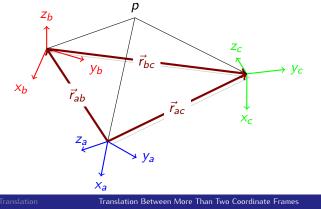

Example

EE 570: Location and Navigation

Reverse vector \vec{r} , i.e., now from origin of $\{\beta\}$ to origin of $\{\alpha\}$.

• notation:
$$\vec{r}_{\beta\alpha} = -\vec{r}_{\alpha\beta}$$

Vector Notation for Translation	Translation Between More Than Two Coordinate Frame
Kovin Wedoward Alu EL Ocory (NIMT)	EE 570: Location and Navigation

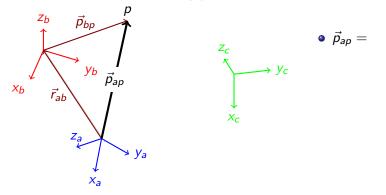

Example 5 / 15

February 4, 2016

Consider three coordinate systems $\{a\}$, $\{b\}$, $\{c\}$ that have translation and rotation relative to each other.

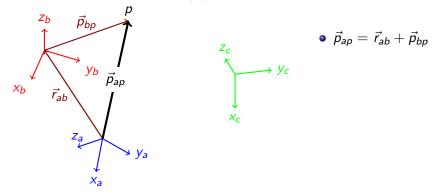
• Knowing relationships between frames $\{a\}$, $\{b\}$, and $\{c\}$, i.e., \vec{r}_{ab} , \vec{r}_{bc} , \vec{r}_{ac} , C_b^a , C_c^b , and C_c^a , location of point p can be described in any frame, i.e., \vec{p}^a or \vec{p}^b or \vec{p}^c .

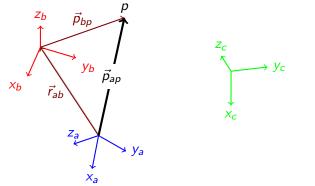
Kevin Wedeward, Aly El-Osery (NMT)


EE 570: Location and Navigation

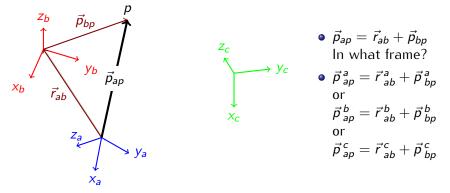
Examp

6 / 15

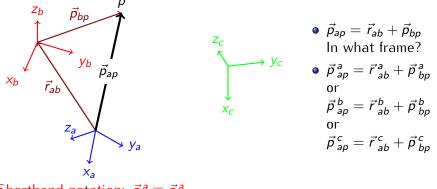

February 4, 2016


	Translation Between More Than Two Coordinate Frames		
Kevin Wedeward, Aly El-Osery (NMT)	EE 570: Location and Navigation	February 4, 2016	7 / 15

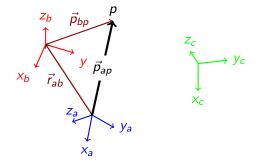
	Translation Between More Than Two Coordinate Frames		
Kevin Wedeward, Aly El-Osery (NMT)	EE 570: Location and Navigation	February 4, 2016	7 / 15



• $\vec{p}_{ap} = \vec{r}_{ab} + \vec{p}_{bp}$ In what frame?


	Translation Between More Than Two Coordinate Frames		
Kevin Wedeward, Aly El-Osery (NMT)	EE 570: Location and Navigation	February 4, 2016	7 / 15

	Translation Between More Than Two Coordinate Frames		
Kevin Wedeward, Aly El-Osery (NMT)	EE 570: Location and Navigation	February 4, 2016	7 / 15


Shorthand notation: $\vec{p}^{a} \equiv \vec{p}^{a}_{ap}$

 Vector Notation for Translation
 Translation Between More Than Two Coordinate Frames
 Example

 Kevin Wedeward, Aly El-Osery
 (NMT)
 EE 570: Location and Navigation
 February 4, 2016
 7 / 15

Given $\vec{p}_{ap}^{a} = \vec{r}_{ab}^{a} + \vec{p}_{bp}^{a}$ and/or the diagram, how would one find \vec{p}_{bp}^{b} ?

Vector Notation for Translation	Translation Between More Than Two Coordinate Frames		Example
Kevin Wedeward, Aly El-Osery (NMT)	EE 570: Location and Navigation	February 4, 2016	8 / 15

Given $\vec{p}_{ap}^{a} = \vec{r}_{ab}^{a} + \vec{p}_{bp}^{a}$ and/or the diagram, how would one find \vec{p}_{bp}^{b} ? • use given relationship or vector addition z_{c} x_{b} \vec{r}_{ab} y_{a} y_{a} y_{a} y_{a}

 Vector Notation for Translation
 Translation Between More Than Two Coordinate Frames
 Example

 Kevin Wedeward, Aly EL-Osery
 (NMT)
 EE 570: Location and Navigation
 February 4, 2016
 8 / 15

Given $\vec{p}_{ap}^{a} = \vec{r}_{ab}^{a} + \vec{p}_{bp}^{a}$ and/or the diagram, how would one find \vec{p}_{bp}^{b} ? • use given relationship or vector addition $\Rightarrow \vec{p}_{bp}^{a} = \vec{p}_{ap}^{a} - \vec{r}_{ab}^{a}$ $\Rightarrow \vec{p}_{bp}^{a} = \vec{p}_{ap}^{a} - \vec{r}_{ab}^{a}$

 Vector Notation for Translation
 Translation Between More Than Two Coordinate Frames
 Example

 Kevin Wedeward, Aly EL-Osery
 (NMT)
 EE 570: Location and Navigation
 February 4, 2016
 8 / 15

Given $\vec{p}_{ap}^{a} = \vec{r}_{ab}^{a} + \vec{p}_{bp}^{a}$ and/or the diagram, how would one find \vec{p}_{bp}^{b} ? • use given relationship or vector addition $\Rightarrow \vec{p}_{bp}^{a} = \vec{p}_{ap}^{a} - \vec{r}_{ab}^{a}$ • now need to reference to $\{b\}$

 Vector Notation for Translation
 Translation Between More Than Two Coordinate Frames
 Example

 Kevin Wedeward, Aly EL-Osery
 (NMT)
 EE 570: Location and Navigation
 February 4, 2016
 8 / 15

Given $\vec{p}_{ap}^{a} = \vec{r}_{ab}^{a} + \vec{p}_{bp}^{a}$ and/or the diagram, how would one find \vec{p}_{bp}^{b} ? use given relationship \vec{p}_{bp} or vector addition Z_{c} $\Rightarrow \vec{p}_{bp}^{a} = \vec{p}_{ap}^{a} - \vec{r}_{ab}^{a}$ now need to reference to {*b*} X_{c} $C_a^b \vec{p}_{bn}^a =$ Za $C_a^b \left(\dot{\vec{p}}_{ap}^a - \vec{r}_{ab}^a \right)$ Уa $\Rightarrow \vec{p}^{b}_{bb} = \vec{p}^{b}_{ab} - \vec{r}^{b}_{ab}$

Vector Notation for Translation

Translation Between More Than Two Coordinate Frames

Example

Kevin Wedeward, Aly El-Osery (NMT)

EE 570: Location and Navigation

It is important to remember difference between recoordinatizing a vector and finding a location *wrt* a different frame.

Vector Notation for Translation

Kevin Wedeward, Aly El-Osery (NMT)

Translation Between More Than Two Coordinate Frames

EE 570: Location and Navigation

Example

February 4, 2016 9 / 15

It is important to remember difference between recoordinatizing a vector and finding a location *wrt* a different frame.

• Recoordinatizing: $\vec{p}_{ap}^{c} = C_{a}^{c} \vec{p}_{ap}^{a}$ (only frame of reference changes)

Vector Notation for Translation

Kevin Wedeward, Aly El-Osery (NMT)

Translation Between More Than Two Coordinate Frames

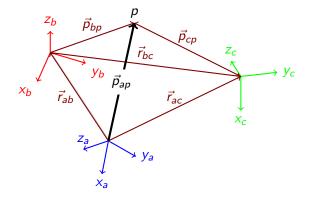
EE 570: Location and Navigation

Example

February 4, 2016 9 / 15

It is important to remember difference between recoordinatizing a vector and finding a location *wrt* a different frame.

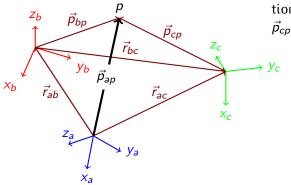
- Recoordinatizing: $\vec{p}_{ap}^{c} = C_{a}^{c} \vec{p}_{ap}^{a}$ (only frame of reference changes)
- Location wrt different frame: $\vec{p}_{cp}^{c} = \vec{r}_{cb}^{c} + C_{b}^{c}\vec{r}_{ba}^{b} + C_{a}^{c}\vec{p}_{ap}^{a}$ (vector addition in same frame) $\neq C_{a}^{c}\vec{p}_{ap}^{a}$


 Vector Notation for Translation
 Translation Between More Than Two Coordinate Frames
 Example

 Kevin Wedeward, Aly El-Osery
 (NMT)
 EE 570: Location and Navigation
 February 4, 2016
 10 / 15

Translation (more than two coordinate frames)

Determine location of point *p* from frame $\{c\}$; \Rightarrow looking for \vec{p}_{cp}



	Translation Between More Than Two Coordinate Frames		
Kevin Wedeward, Aly El-Osery (NMT)	EE 570: Location and Navigation	February 4, 2016	10 / 15

Translation (more than two coordinate frames)

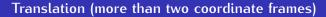
Determine location of point p from frame $\{c\}$; \Rightarrow looking for \vec{p}_{cp}

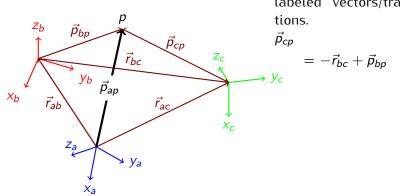
Many approaches given labeled vectors/translations.

Vector	Nota	tion f			lation	
--------	------	--------	--	--	--------	--

Kevin Wedeward, Aly El-Osery (NMT)

Translation Between More Than Two Coordinate Frames

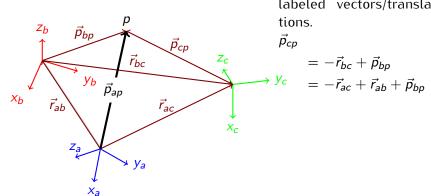

EE 570: Location and Navigation


February 4, 2016 <u>1</u>

10 / 15

Many approaches given labeled vectors/translations. \vec{p}_{cp} $= -\vec{r}_{bc} + \vec{p}_{bp}$

Translation Between More Than Two Coordinate Frames Kevin Wedeward, Aly El-Osery (NMT) EE 570: Location and Navigation February 4, 2016

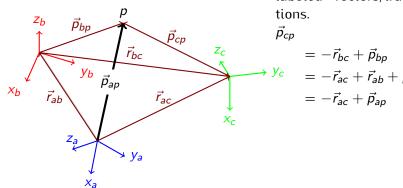

10 / 15

> Many approaches given labeled vectors/translations. \vec{p}_{cp} $= -\vec{r}_{bc} + \vec{p}_{bp}$ $\rightarrow y_c = -\vec{r}_{ac} + \vec{r}_{ab} + \vec{p}_{bb}$

Translation Between More Than Two Coordinate Frames EE 570: Location and Navigation

Kevin Wedeward, Aly El-Osery (NMT)

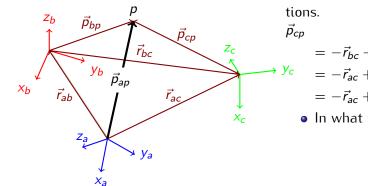
February 4, 2016



> Many approaches given labeled vectors/transla- $= -\vec{r}_{bc} + \vec{p}_{bp}$ $\rightarrow y_c = -\vec{r}_{ac} + \vec{r}_{ab} + \vec{p}_{bp}$ $= -\vec{r}_{ac} + \vec{p}_{an}$

Translation Between More Than Two Coordinate Frames Kevin Wedeward, Aly El-Osery (NMT) EE 570: Location and Navigation February 4, 2016

Translation (more than two coordinate frames)


> Many approaches given labeled vectors/translations. \vec{p}_{cp} $= -\vec{r}_{bc} + \vec{p}_{bp}$ $\vec{y}_{c} = -\vec{r}_{ac} + \vec{r}_{ab} + \vec{p}_{bp}$ $= -\vec{r}_{ac} + \vec{p}_{ap}$ • In what frame?

n Translation Between More Than Two Coordinate Frames
y (NMT) EE 570: Location and Navigation Fe

Kevin Wedeward, Aly El-Osery (NMT)

February 4, 2016

10 / 15

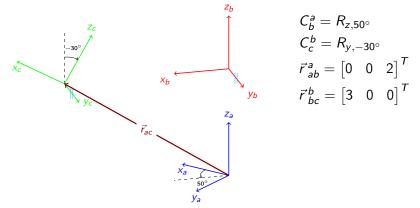
Zb \vec{p}_{bp} \vec{p}_{cp} \vec{r}_{bc} Z_C Уь \vec{p}_{ap} Xh \vec{r}_{ab} \vec{r}_{ac} X_c Za Уa Xa

Many approaches given labeled vectors/translations. \vec{p}_{cp} $= -\vec{r}_{bc} + \vec{p}_{bp}$ $\rightarrow y_c = -\vec{r}_{ac} + \vec{r}_{ab} + \vec{p}_{bp}$ $= -\vec{r}_{ac} + \vec{p}_{ap}$

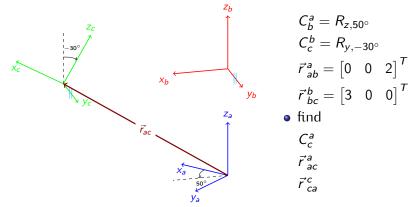
- In what frame? doesn't matter, so long as same
- Can always recoordinatize given C_b^a, C_c^b, C_a^c

Vector Notation for Translation

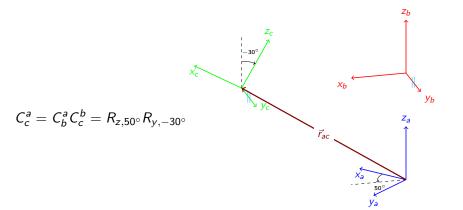
Kevin Wedeward, Aly El-Osery (NMT)


Translation Between More Than Two Coordinate Frames

EE 570: Location and Navigation

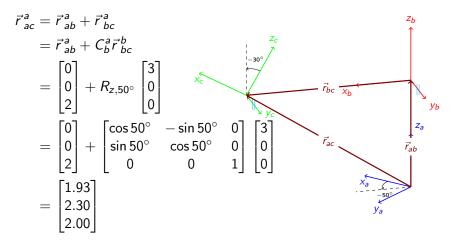

Consider the three coordinate frames $\{a\}, \{b\}, \{c\}$ shown with the rotations and translations between some frames given.

Vector Notation for Translation	Translation Between More Than Two Coordinate Frames		Example
Kevin Wedeward, Aly El-Osery (NMT)	EE 570: Location and Navigation	February 4, 2016	11 / 15



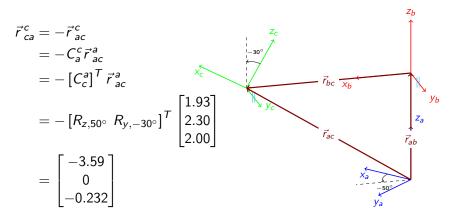
Consider the three coordinate frames $\{a\}, \{b\}, \{c\}$ shown with the rotations and translations between some frames given.

Vector Notation for Translation	Translation Between More Than Two Coordinate Frames		Example
Kevin Wedeward, Aly El-Osery (NMT)	EE 570: Location and Navigation	February 4, 2016	11 / 15



			Example
Kevin Wedeward, Aly El-Osery (NMT)	EE 570: Location and Navigation	February 4, 2016	12 / 15

Example - Find \vec{r}_{ac}^{a}



 Vector Notation for Translation
 Translation Between More Than Two Coordinate Frames
 Example

 Kevin Wedeward, Aly EL-Osery
 (NMT)
 EE 570: Location and Navigation
 February 4, 2016
 13 / 15

Example - Find \vec{r}_{ca}^{c}

			Example
Kevin Wedeward, Aly El-Osery (NMT)	EE 570: Location and Navigation	February 4, 2016	14 / 15

 Vector Notation for Translation
 Translation Between More Than Two Coordinate Frames
 Example

 Kevin Wedeward, Aly El-Osery
 (NMT)
 EE 570: Location and Navigation
 February 4, 2016
 15 / 15