EE 570: Location and Navigation Navigation Mathematics: Angular and Linear Velocity

Kevin Wedeward Aly El-Osery

Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA

In Collaboration with Stephen Bruder Electrical and Computer Engineering Department Embry-Riddle Aeronautical Univesity Prescott, Arizona, USA

February 10, 2016

 Review
 Intro to Vel

 ^d/_d C and ω

Review

2 Introduction to Velocity

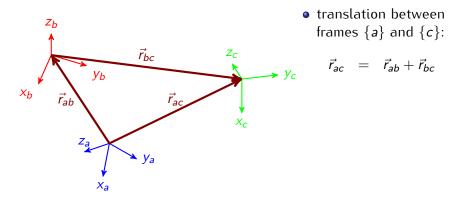
3 Derivative of Rotation Matrix and Angular Velocity

- Approach 1: Structure and mechanics
- Approach 2: Angle-axis
- Properties of Skew-symmetric Matrices
- 5 Propagation/Addition of Angular Velocity
- 6 Linear Position, Velocity and Acceleration

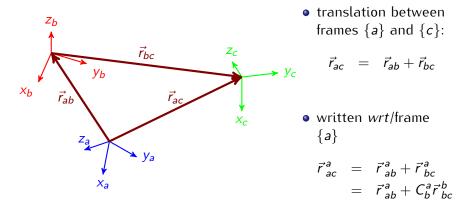
 Review
 Intro to Vel
 ^d/_σ C and ω
 Properties of SS Matrices
 Add Angular Velocity
 Pos, Vel & Accel

 Kevin Wedeward, Alu EL-Oseru
 (NMT)
 EE 570: Location and Navigation
 February 10, 2016
 2 / 19

Review



Review



Review						
Kevin We	deward, Aly El-Osery	(NMT)	EE 570: Location and Navigation	February	10, 2016	3 / 19

$$ec{r}^a_{ac} = ec{r}^a_{ab} + C^a_b ec{r}^b_{bc}$$

what is linear velocity between frames?

$$\vec{r}_{ac}^{a}=\vec{r}_{ab}^{a}+C_{b}^{a}\vec{r}_{bc}^{b}$$

what is linear velocity between frames?

• Why is $\dot{C}_b^a \neq 0$ in general?

$$\vec{r}_{ac}^{a} = \vec{r}_{ab}^{a} + C_{b}^{a}\vec{r}_{bc}^{b}$$

what is linear velocity between frames?

$$\vec{r}^{a}_{ac} \equiv \frac{d}{dt} \vec{r}^{a}_{ac}$$

$$= \frac{d}{dt} \left(\vec{r}^{a}_{ab} + C^{a}_{b} \vec{r}^{b}_{bc} \right)$$

$$= \vec{r}^{a}_{ab} + \dot{C}^{a}_{b} \vec{r}^{b}_{bc} + C^{a}_{b} \vec{r}^{b}_{bc}$$

• Why is $\dot{C}_b^a \neq 0$ in general? Recoordinatization of $\vec{r}_{bc}^{\ b}$ is time-dependent.

$$\vec{r}_{ac}^{a} = \vec{r}_{ab}^{a} + C_{b}^{a}\vec{r}_{bc}^{b}$$

what is linear velocity between frames?

$$\vec{r}^{a}_{ac} \equiv \frac{d}{dt} \vec{r}^{a}_{ac}$$

$$= \frac{d}{dt} \left(\vec{r}^{a}_{ab} + C^{a}_{b} \vec{r}^{b}_{bc} \right)$$

$$= \vec{r}^{a}_{ab} + \dot{C}^{a}_{b} \vec{r}^{b}_{bc} + C^{a}_{b} \vec{r}^{b}_{bc}$$

- Why is $\dot{C}_b^a \neq 0$ in general? Recoordinatization of $\vec{r}_{bc}^{\ b}$ is time-dependent.
- \dot{C}_b^a is directly related to angular velocity between frames $\{a\}$ and $\{b\}$.

Given a rotation matrix *C*, one of its properties is

$$[C_b^a]^T C_b^a = C_b^a [C_b^a]^T = \mathcal{I}$$

Taking the time-derivative of the "right-inverse" property

$$\frac{d}{dt}\left(C_b^a[C_b^a]^T\right) = \frac{d}{dt}\mathcal{I}$$

Given a rotation matrix C, one of its properties is

$$[C_b^a]^T C_b^a = C_b^a [C_b^a]^T = \mathcal{I}$$

Taking the time-derivative of the "right-inverse" property

$$\frac{d}{dt}\left(C_b^a[C_b^a]^T\right) = \frac{d}{dt}\mathcal{I}$$

$$\Rightarrow \underbrace{\dot{C}_{b}^{a}[C_{b}^{a}]^{T}}_{\Omega_{ab}^{a}} + \underbrace{\underbrace{C_{b}^{a}[\dot{C}_{b}^{a}]^{T}}_{(\dot{C}_{b}^{a}[C_{b}^{a}]^{T})^{T}} = 0$$

 Review
 Intro to Vel

 $\frac{d}{dC}$ and ω oconoco
 Properties of SS Matrices
 Add Angular Velocity
 Pos, Vel & Accel

 Kevin Wedeward, Aly El-Osery
 (NMT)
 EE 570: Location and Navigation
 February 10, 2016
 5 / 19

Given a rotation matrix C, one of its properties is

$$[C_b^a]^T C_b^a = C_b^a [C_b^a]^T = \mathcal{I}$$

Taking the time-derivative of the "right-inverse" property

$$\frac{d}{dt}\left(C_b^a[C_b^a]^T\right) = \frac{d}{dt}\mathcal{I}$$

$$\Rightarrow \underbrace{\dot{C}_{b}^{a}[C_{b}^{a}]^{T}}_{\Omega_{ab}^{a}} + \underbrace{\underbrace{C_{b}^{a}[\dot{C}_{b}^{a}]^{T}}_{(\underline{\dot{C}}_{b}^{a}[C_{b}^{a}]^{T})^{T}}_{[\Omega_{ab}^{a}]^{T}} = 0$$
$$\Rightarrow \Omega_{ab}^{a} + [\Omega_{ab}^{a}]^{T} = 0$$

 Review
 Intro to Vel
 d/d C and ω Φ000000
 Properties of SS Matrices
 Add Angular Velocity
 Pos, Vel & Accel

 Kevin Wedeward, Aly El-Osery
 (NMT)
 EE 570: Location and Navigation
 February 10, 2016
 5 / 19

Given a rotation matrix C, one of its properties is

$$[C_b^a]^T C_b^a = C_b^a [C_b^a]^T = \mathcal{I}$$

Taking the time-derivative of the "right-inverse" property

$$\frac{d}{dt}\left(C_b^a[C_b^a]^T\right) = \frac{d}{dt}\mathcal{I}$$

$$\Rightarrow \underbrace{\dot{C}_{b}^{a}[C_{b}^{a}]^{T}}_{\Omega_{ab}^{a}} + \underbrace{\underbrace{C_{b}^{a}[\dot{C}_{b}^{a}]^{T}}_{(\dot{C}_{b}^{a}[C_{b}^{a}]^{T})^{T}} = 0$$

$$\Rightarrow \Omega^{a}_{ab} + [\Omega^{a}_{ab}]^{T} = 0$$

 $\Rightarrow \Omega^{a}_{ab}$ is skew-symmetric!

	to Vel $\frac{d}{dt}C$ and			
Kevin Wedeward, Al	y El-Osery (NMT)	EE 570: Location and Navigation	Februa	nry 10, 2016 5 / 19

Define this skew-symmetric matrix Ω^a_{ab}

$$\Omega^{a}_{ab} = \begin{bmatrix} \vec{\omega} \ ^{a}_{ab} \times \end{bmatrix} = \begin{bmatrix} 0 & -\omega_{z} & \omega_{y} \\ \omega_{z} & 0 & -\omega_{x} \\ -\omega_{y} & \omega_{x} & 0 \end{bmatrix}$$

Review	Intro to Vel	$\frac{d}{dt}C$ and ω	Properties of SS Matrices	Add Angular Velocity	Pos, Vel	& Accel
Kevin Wede	ward, Aly El-Osery	(NMT)	EE 570: Location and Navigation	Feb	ruary 10, 2016	6 / 19

Define this skew-symmetric matrix Ω_{ab}^{a}

$$\Omega^{a}_{ab} = \begin{bmatrix} \vec{\omega} \ ^{a}_{ab} \times \end{bmatrix} = \begin{bmatrix} 0 & -\omega_{z} & \omega_{y} \\ \omega_{z} & 0 & -\omega_{x} \\ -\omega_{y} & \omega_{x} & 0 \end{bmatrix}$$

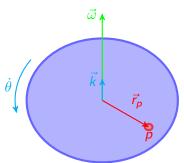
Note
$$\Omega^a_{ab} = \dot{C}^a_b [C^a_b]^T$$

$$\Rightarrow \dot{C}^{a}_{b} = \Omega^{a}_{ab}C^{a}_{b}$$

is a means of finding derivative of rotation matrix provided we can further understand Ω^a_{ab} .

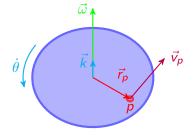
Now for some insight into physical meaning of Ω^a_{ab} .

• Consider a point p on a rigid body rotating with angular velocity $\vec{\omega} = [\omega_x, \omega_y, \omega_z]^T = \dot{\theta}\vec{k} = \dot{\theta}[k_x, k_y, k_z]^T$ with \vec{k} a unit vector.

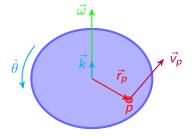


 Review
 Intro to Vel
 d/dt C and ω Properties of SS Matrices
 Add Angular Velocity
 Pos, Vel & Accel

 Kevin Wedeward, Aly El-Osery
 (NMT)
 EE 570: Location and Navigation
 February 10, 2016
 7 / 19



From mechanics, linear velocity $\vec{v_p}$ of point is

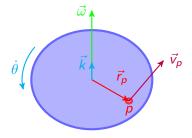


From mechanics, linear velocity $\vec{v_p}$ of point is

$$\vec{v_{p}} = \vec{\omega} \times \vec{r_{p}} = \begin{bmatrix} \omega_{x} \\ \omega_{y} \\ \omega_{z} \end{bmatrix} \times \begin{bmatrix} r_{x} \\ r_{y} \\ r_{z} \end{bmatrix} = \begin{bmatrix} \omega_{y} r_{z} - \omega_{z} r_{y} \\ \omega_{z} r_{x} - \omega_{x} r_{z} \\ \omega_{x} r_{y} - \omega_{y} r_{x} \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & -\omega_{z} & \omega_{y} \\ \omega_{z} & 0 & -\omega_{x} \\ -\omega_{y} & \omega_{x} & 0 \end{bmatrix}}_{?} \begin{bmatrix} r_{x} \\ r_{y} \\ r_{z} \end{bmatrix}$$

 Review
 Intro to Vel
 $\frac{d}{dt}C$ and ω 0000000 Properties of SS Matrices
 Add Angular Velocity
 Pos, Vel & Accel

 Kevin Wedeward, Aly El-Osery
 (NMT)
 EE 570: Location and Navigation
 February 10, 2016
 8 / 19

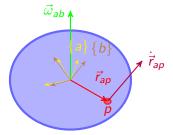


From mechanics, linear velocity $\vec{v_p}$ of point is

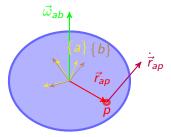
$$\vec{v_{p}} = \vec{\omega} \times \vec{r_{p}} = \begin{bmatrix} \omega_{x} \\ \omega_{y} \\ \omega_{z} \end{bmatrix} \times \begin{bmatrix} r_{x} \\ r_{y} \\ r_{z} \end{bmatrix} = \begin{bmatrix} \omega_{y} r_{z} - \omega_{z} r_{y} \\ \omega_{z} r_{x} - \omega_{x} r_{z} \\ \omega_{x} r_{y} - \omega_{y} r_{x} \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & -\omega_{z} & \omega_{y} \\ \omega_{z} & 0 & -\omega_{x} \\ -\omega_{y} & \omega_{x} & 0 \end{bmatrix}}_{\Omega = [\vec{\omega} \times]} \begin{bmatrix} r_{x} \\ r_{y} \\ r_{z} \end{bmatrix}$$

 $\Rightarrow \Omega$ represents angular velocity and performs cross product

		$\frac{d}{dt}C$ and 0	ω Properties of SS Matrices			
Kevin Wedewa	ard, Aly El-Osery	(NMT)	EE 570: Location and Navigation	February	10, 2016	9 / 19



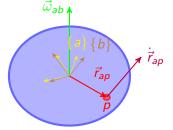
Review	Intro to Vel	$\frac{d}{dt}C$ and ω	Properties of SS Matrices	Add Angular Velocity	Pos, Vel	& Accel
Kevin Wedev	vard, Aly El-Osery	(NMT)	EE 570: Location and Navigation	February	10, 2016	10 / 19



Start with position

$$\vec{r}_{ap}^{a} = \underbrace{\vec{r}_{ab}^{a}}_{0} + C_{b}^{a}\vec{r}_{bp}^{b}$$

		$\frac{d}{dt}C$ and ω				
Kevin Wede	ward, Aly El-Osery	(NMT)	EE 570: Location and Navigation	February	10, 2016	10 / 19



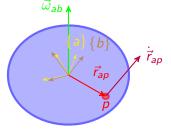
and take derivative wrt time

$$\begin{split} \dot{\vec{r}}^{a}_{ap} &= \underbrace{\dot{C}^{a}_{b}}_{\Omega^{a}_{ab}C^{a}_{b}} \vec{r}^{b}_{bp} + \underbrace{C^{a}_{b} \vec{r}^{b}_{bp}}_{0} \\ &= \Omega^{a}_{ab}C^{a}_{b} \vec{r}^{b}_{bp} \\ &= \Omega^{a}_{ab} \vec{r}^{a}_{bp} = [\vec{\omega}^{a}_{ab} \times] \vec{r}^{a}_{bp} \end{split}$$

Start with position

$$\vec{r}_{ap}^{a} = \underbrace{\vec{r}_{ab}^{a}}_{0} + C_{b}^{a}\vec{r}_{bp}^{b}$$

		$\frac{d}{dt}C$ and u				
Kevin Wedev	vard, Aly El-Osery	(NMT)	EE 570: Location and Navigation	February	10, 2016	10 / 19



Start with position

$$\vec{r}_{ap}^{a} = \underbrace{\vec{r}_{ab}^{a}}_{0} + C_{b}^{a}\vec{r}_{bp}^{b}$$

and take derivative wrt time

$$\begin{split} \dot{\vec{r}}^{a}_{ap} &= \underbrace{\dot{C}^{a}_{b}}_{\Omega^{a}_{ab}C^{a}_{b}} \vec{r}^{b}_{bp} + \underbrace{C^{a}_{b}\vec{r}^{b}_{bp}}_{0} \\ &= \Omega^{a}_{ab}C^{b}_{b}\vec{r}^{b}_{bp} \\ &= \Omega^{a}_{ab}\vec{r}^{a}_{bp} = [\vec{\omega}^{a}_{ab}\times]\vec{r}^{a}_{bp} \end{split}$$

from which it is observed (compare to $\vec{v}_p = \vec{\omega} \times \vec{r}_p$) that Ω^a_{ab} represents cross product with angular velocity $\vec{\omega}^a_{ab}$.

		$\frac{d}{dt}C$ and 000000				
Kevin Wedew	ard, Aly El-Osery	(NMT)	EE 570: Location and Navigation	February	10, 2016	10 / 19

- Another approach to developing derivative of rotation matrix and angular velocity is based upon angle-axis representation of orientation and rotation matrix as exponential.
- This approach is included in notes.

$$C\Omega C^{\mathsf{T}} \vec{b} = C \left[\vec{\omega} \times \left(C^{\mathsf{T}} \vec{b} \right) \right]$$
$$= C \vec{\omega} \times \left(C C^{\mathsf{T}} \vec{b} \right)$$
$$= C \vec{\omega} \times \vec{b}$$
$$= [C \vec{\omega} \times] \vec{b}$$

Therefore (from above),

$$C\Omega C^{T} = C[\vec{\omega} \times] C^{T} = [C\vec{\omega} \times]$$

and (via distributive property)

$$C[\vec{\omega} \times] = [C\vec{\omega} \times]C$$

1

$$\begin{split} \dot{C}_{b}^{a} &= \Omega_{ab}^{a} C_{b}^{a} \\ &= [\vec{\omega}_{ab}^{a} \times] C_{b}^{a} \\ &= [C_{b}^{a} \vec{\omega}_{ab}^{b} \times] C_{b}^{a} \\ &= C_{b}^{a} [\vec{\omega}_{ab}^{b} \times] \\ &= C_{b}^{a} [\vec{\omega}_{ab}^{b} \times] \\ &= C_{b}^{a} \Omega_{ab}^{b} \end{split}$$

$$\Rightarrow \dot{C}^{a}_{b} = \Omega^{a}_{ab}C^{a}_{b} = C^{a}_{b}\Omega^{b}_{ab}$$

Angular velocity can be

- described as a vector
 - the angular velocity of the *b*-frame *wrt* the *a*-frame resolved in the *c*-frame, $\vec{\omega}_{ab}^{c}$
 - $\vec{\omega}_{ab} = -\vec{\omega}_{ba}$

Angular velocity can be

- described as a vector
 - the angular velocity of the *b*-frame *wrt* the *a*-frame resolved in the *c*-frame, $\vec{\omega}_{ab}^{c}$
 - $\vec{\omega}_{ab} = -\vec{\omega}_{ba}$
- described as a skew-symmetric matrix $\Omega_{ab}^{c} = [\vec{\omega} \frac{c}{ab} \times]$
 - the skew-symmetric matrix is equivalent to the vector cross product when pre-multiplying another vector

Angular velocity can be

- described as a vector
 - the angular velocity of the *b*-frame wrt the *a*-frame resolved in the *c*-frame, $\vec{\omega}_{ab}^{c}$
 - $\vec{\omega}_{ab} = -\vec{\omega}_{ba}$
- described as a skew-symmetric matrix $\Omega_{ab}^{c} = [\vec{\omega} \, {}^{c}_{ab} \times]$
 - the skew-symmetric matrix is equivalent to the vector cross product when pre-multiplying another vector
- related to the derivative of the rotation matrix

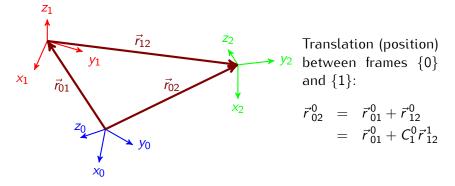
$$\begin{split} \dot{C}_b^a &= \Omega_{ab}^a C_b^a = C_b^a \Omega_{ab}^b \\ \dot{C}_b^a &= -\Omega_{ba}^a C_b^a = -C_b^a \Omega_{ba}^b \end{split}$$

Consider the derivative of the composition of rotations $C_2^0 = C_1^0 C_2^1$.

$$\begin{aligned} \frac{d}{dt}C_2^0 &= \frac{d}{dt}C_1^0C_2^1\\ \dot{C}_2^0 &= \dot{C}_1^0C_2^1 + C_1^0\dot{C}_2^1\\ \Omega_{02}^0C_2^0 &= \Omega_{01}^0C_1^0C_2^1 + C_1^0C_2^1\Omega_{12}^2\\ \Omega_{02}^0 &= \Omega_{01}^0C_2^0\left[C_2^0\right]^T + C_2^0\Omega_{12}^2\left[C_2^0\right]^T\\ [\vec{\omega}_{02}^0 &\times] &= [\vec{\omega}_{01}^0 \times] + [C_2^0\vec{\omega}_{12}^2 \times]\\ \Rightarrow \vec{\omega}_{02}^0 &= \vec{\omega}_{01}^0 + \vec{\omega}_{12}^0\end{aligned}$$

 \Rightarrow angular velocities (as vectors) add so long as resolved common coordinate system

We can get back to where we started ... motion (translation and rotation) between frames and their derivatives.



Linear velocity:

$$\begin{split} \dot{\vec{r}}_{02}^{0}(t) &= \frac{d}{dt} \left(\vec{r}_{01}^{0} + C_{1}^{0} \vec{r}_{12}^{1} \right) \\ &= \dot{\vec{r}}_{01}^{0} + \dot{C}_{1}^{0} \vec{r}_{12}^{1} + C_{1}^{0} \dot{\vec{r}}_{12}^{1} \\ &= \dot{\vec{r}}_{01}^{0} + [\vec{\omega}_{01}^{0} \times] C_{1}^{0} \vec{r}_{12}^{1} + C_{1}^{0} \dot{\vec{r}}_{12}^{1} \\ &= \dot{\vec{r}}_{01}^{0} + \vec{\omega}_{01}^{0} \times (C_{1}^{0} \vec{r}_{12}^{1}) + C_{1}^{0} \dot{\vec{r}}_{12}^{1} \end{split}$$

Linear acceleration:

$$\begin{split} \ddot{r}^{0}_{02} &= \frac{d}{dt} \left(\dot{\vec{r}}^{0}_{01} + \vec{\omega}^{0}_{01} \times \left(C^{0}_{1} \vec{r}^{1}_{12} \right) + C^{0}_{1} \vec{r}^{1}_{12} \right) \\ &= \ddot{r}^{0}_{01} + \dot{\vec{\omega}}^{0}_{01} \times \left(C^{0}_{1} \vec{r}^{1}_{12} \right) + \vec{\omega}^{0}_{01} \times \left(\dot{c}^{0}_{1} \vec{r}^{1}_{12} \right) + \vec{\omega}^{0}_{01} \times \left(C^{0}_{1} \vec{r}^{1}_{12} \right) + \dot{c}^{0}_{1} \vec{r}^{1}_{12} + C^{0}_{1} \vec{r}^{1}_{12} \end{split}$$

accel of {1}'s origin
from {0} in {0}
Transverse accel
$$\begin{array}{c} = \vec{r}_{01}^{o} + \dot{\omega}_{01}^{o} \times \vec{r}_{12}^{o}(t) + \vec{\omega}_{01}^{o} \times (\vec{\omega}_{01}^{o} \times \vec{r}_{12}^{o}(t)) + 2\vec{\omega}_{01}^{o} \times (c_{1}^{o}\vec{r}_{12}^{o}) + c_{1}^{o}\vec{r}_{12}^{o} + c_{1}^{o}$$

					Pos, Vel	& Accel
Kevin Wedev	ward, Aly El-Osery	(NMT)	EE 570: Location and Navigation	February	10, 2016	18 / 19

 Review
 Intro to Vel
 $\frac{d}{dt}$ C and ω Properties of SS Matrices
 Add Angular Velocity
 Pos, Vel & Accel

 Kevin Wedeward, Aly EL-Osery
 (NMT)
 EE 570: Location and Navigation
 February 10, 2016
 19 / 19