Lecture

Navigation Equations: An Overview

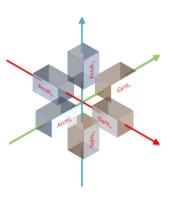
EE 570: Location and Navigation

Lecture Notes Update on February 16, 2016

Aly El-Osery and Kevin Wedeward, Electrical Engineering Dept., New Mexico Tech In collaboration with

Stephen Bruder, Electrical & Computer Engineering, Embry-Riddle Aeronautical University

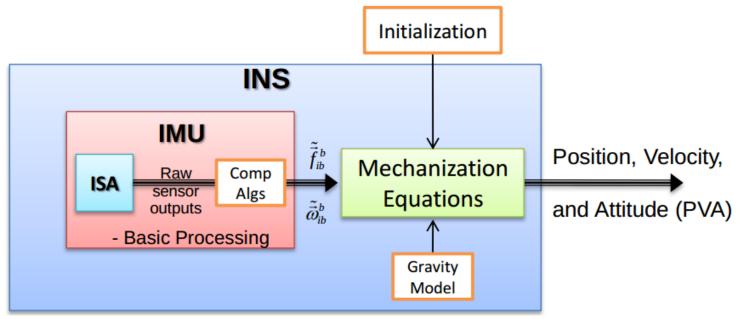
The Fundamental Problem

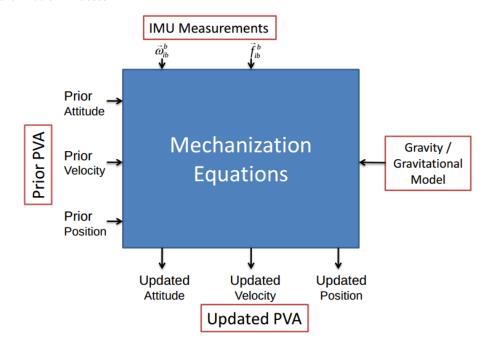

- The fundamental inertial navigation problem:
 - Using inertial sensors (accels & gyros) and an initial position and orientation, determine the vehicle's (i.e., body frame) current position, velocity, and attitude (PVA)
 - Assumptions:
 - 1. Know where we started (initial PVA: $\vec{r}_{2b}^{?}$, $\vec{v}_{2b}^{?}$, & $C_b^{?}$)
 - 2. Inertial sensors ($\vec{\omega}_{ib}^{b}$ and \vec{f}_{ib}^{b})
 - 3. Have a gravity $(\vec{g}_b^{\,?})$ and/or gravitational $(\vec{\gamma}_{\,?b}^{\,?})$ model
 - Where am I? Current PVA?
 - * With respect to which frame?

Inertial Navigation

- The process of "integrating" angular velocity & acceleration to determine one's position, velocity, and attitude (PVA)
- To measure the acceleration and angular velocity vectors we need at least 3-gyros and 3-accels
 - Typically configured in an orthogonal triad
- The "mechanization" can be performed wrt:
 - the ECI frame,
 - the ECEF frame,
 - the Nav frame, or
 - the tangential frame.

ISA, IMU, & INS


- An Inertial Navigation System (INS)
 - ISA Inertial Sensor Assembly
 - * Typically, 3-gyros, 3-accels, and basic electronics


.

.:

- IMU Inertial Measurement Unit
 - * ISA + compensation algorithms (i.e., basic processing)
- INS Inertial Navigation System
 - * IMU + gravity model + "mechanization" algorithm

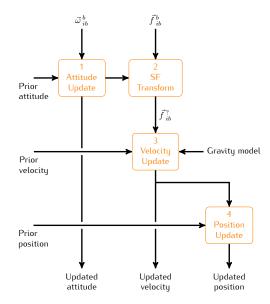
Mechanization Process

A Four Step Mechanization

- 1. Attitude Update
 - Update the prior attitude using the current angular velocity

.4

.5


- 2. Transform the specific force measurement $(\vec{f}_{ib}^{\,?} = C_b^? \vec{f}_{ib}^{\,b})$
 - Typically, using the attitude computed in step 1
- 3. Update the velocity
 - Essentially integrate the result from step 2 with the use of a gravity/gravitational model $(\vec{f}_{ib}=\vec{a}_{ib}-\vec{\gamma}_{ib})$

.6

.7

- 4. Update the position
 - integrate the result from step 3

A Four Step Mechanization

3