EE 570: Location and Navigation Navigation Equations: An Overview

Aly El-Osery Kevin Wedeward

Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA

In Collaboration with
Stephen Bruder
Electrical and Computer Engineering Department
Embry-Riddle Aeronautical Univesity
Prescott, Arizona, USA

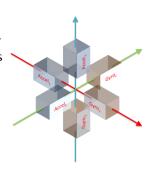
February 16, 2016

- The fundamental inertial navigation problem:
 - Using inertial sensors (accels & gyros) and an initial position and orientation, determine the vehicle's (i.e., body frame) current position, velocity, and attitude (PVA)

- The fundamental inertial navigation problem:
 - Using inertial sensors (accels & gyros) and an initial position and orientation, determine the vehicle's (i.e., body frame) current position, velocity, and attitude (PVA)
 - Assumptions:

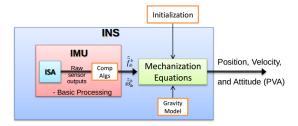
- The fundamental inertial navigation problem:
 - Using inertial sensors (accels & gyros) and an initial position and orientation, determine the vehicle's (i.e., body frame) current position, velocity, and attitude (PVA)
 - Assumptions:
 - **1** Know where we started (initial PVA: $\vec{r}_{?b}^?$, $\vec{v}_{?b}^?$, & $\vec{C}_b^?$)
 - 2 Inertial sensors $(\vec{\omega}_{ib}^{\ b})$ and $\vec{f}_{ib}^{\ b}$
 - **1** Have a gravity $(\vec{g}_b^?)$ and/or gravitational $(\vec{\gamma}_b^?)$ model

- The fundamental inertial navigation problem:
 - Using inertial sensors (accels & gyros) and an initial position and orientation, determine the vehicle's (i.e., body frame) current position, velocity, and attitude (PVA)
 - Assumptions:
 - **1** Know where we started (initial PVA: $\vec{r}_{?b}^?$, $\vec{v}_{?b}^?$, & $\vec{C}_b^?$)
 - 2 Inertial sensors $(\vec{\omega}_{ib}^{\ b})$ and $\vec{f}_{ib}^{\ b}$
 - **1** Have a gravity $(\vec{g}_{b}^{?})$ and/or gravitational $(\vec{\gamma}_{b}^{?})$ model
 - Where am I? Current PVA?

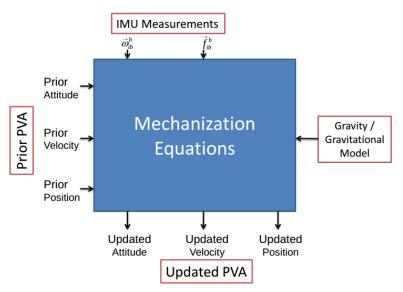


- The fundamental inertial navigation problem:
 - Using inertial sensors (accels & gyros) and an initial position and orientation, determine the vehicle's (i.e., body frame) current position, velocity, and attitude (PVA)
 - Assumptions:
 - **1** Know where we started (initial PVA: $\vec{r}_{?b}^?$, $\vec{v}_{?b}^?$, & $\vec{C}_b^?$)
 - 2 Inertial sensors $(\vec{\omega}_{ib}^{b})$ and \vec{f}_{ib}^{b}
 - **1** Have a gravity $(\vec{g}_{b}^{?})$ and/or gravitational $(\vec{\gamma}_{b}^{?})$ model
 - Where am I? Current PVA?
 - With respect to which frame?

Inertial Navigation


- The process of "integrating" angular velocity & acceleration to determine one's position, velocity, and attitude (PVA)
- To measure the acceleration and angular velocity vectors we need at least 3-gyros and 3-accels
 - Typically configured in an orthogonal triad
- The "mechanization" can be performed wrt:
 - the ECI frame,
 - the ECEF frame,
 - the Nav frame, or
 - the tangential frame.

ISA, IMU, & INS

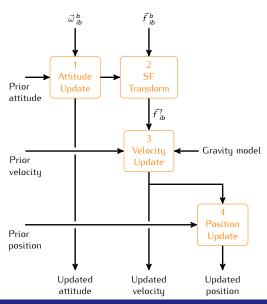


- An Inertial Navigation System (INS)
 - ISA Inertial Sensor Assembly
 - Typically, 3-gyros, 3-accels, and basic electronics
 - IMU Inertial Measurement Unit
 - ISA + compensation algorithms (i.e., basic processing)
 - INS Inertial Navigation System
 - IMU + gravity model + "mechanization" algorithm

Mechanization Process

- Attitude Update
 - Update the prior attitude using the current angular velocity

- Attitude Update
 - Update the prior attitude using the current angular velocity
- ② Transform the specific force measurement $(\vec{f}_{ib}^? = C_b^? \vec{f}_{ib}^b)$
 - Typically, using the attitude computed in step 1



- Attitude Update
 - Update the prior attitude using the current angular velocity
- ② Transform the specific force measurement $(\vec{f}_{ib}^? = C_b^? \vec{f}_{ib}^b)$
 - Typically, using the attitude computed in step 1
- Update the velocity
 - Essentially integrate the result from step 2 with the use of a gravity/gravitational model $(\vec{f}_{ib} = \vec{a}_{ib} \vec{\gamma}_{ib})$

- Attitude Update
 - Update the prior attitude using the current angular velocity
- ② Transform the specific force measurement $(\vec{f}_{ib}? = C_b? \vec{f}_{ib})$
 - Typically, using the attitude computed in step 1
- Update the velocity
 - Essentially integrate the result from step 2 with the use of a gravity/gravitational model $(\vec{f}_{ib} = \vec{a}_{ib} \vec{\gamma}_{ib})$
- Update the position
 - integrate the result from step 3

