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Dead Reckoning vs Position Fixing
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e Navigation can be accomplished via “position fixing” or “dead reckoning”
@ Dead Reckoning — Measures changes in position and/or attitude
o Inertial sensors provide relative position (and attitude)
@ Position Fixing — Directly measuring location
e GPS provides absolute positino (and velocity)
@ How does GPS work?
o Effectively via Multilateration

o If | can measure my distance to three (or more) satellites at known locations, then, own
location can be resolved. Measure distance via “time-of-flight”
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o GNSS — A generic term used to describe these navigation systems that provide a
user with 3-D positioning solution using RF ranging of signals transmitted by
orbiting satellite

@ GNSS examples include

o NAVSTAR — Navigation by Satellite Ranging and Timing operated by the United
States commonly referred to as Global Positing System (GPS)

o GLONASS — Russian

o Galileo — European

e Beidou — China
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GNSS Architecture
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@ Space segment (satellites)

e Control segment

@ User segment




Space Segment
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o Collection of satellites known as constellation rmmm——
@ Broadcasts signals to control segement and the users
o Distributed among different medium Earth orbits (MEOs)
o GPS satellites
e orbit at a radius of 26,580km
o two orbits per sidereal day

Iridium__.__ Hubble

NM gation, and Timing



Control Segment
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@ Consists of

e monitoring stations — at surveyed locations with synchronized clocks and collects
ranging measurements

e control stations — received data from monitoring stations and calculates corrections
uplink stations — sends commands to the satellites.

il 23, 2018 6/20



GNSS Signals -
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In general, a GNSS signal is a carrier with a spreading code modulated using binary
phase shift keying (BPSK) given by

s(t) = V2P C(t)D(t) cos(2mfeat + o) (1)

where P is the signal power, C(t) is the spreading code, D(t) is the data, f, is the
carrier frequency, and ¢q is the phase offset. C(t) and D(t) have +1 values.
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BPSK
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Spreading Code
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GPS Modulation Schemes :
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@ The GPS employs BPSK modulation at two frequencies

o L1=1,575.42 MHz
e L2=1,227.60 MHz
@ Two main PRN code
e C/A: Course acquistion (10-bit TMHz)
e P: Precise
@ 40-bit 10MHz
e Encrypted P(Y) code
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Ranging Basics
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By determining the phase of the received PRN code the raw pseudo-range to a given

satellite is given by
pa R — (t tst a) (2)

where £, is the transmission time of the signal from the satellite, s, t5, , is the arrival

time at antenna, a, and c is the speed of light.
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True Range, LOS and Range Rates d
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The true range from an antenna a to a satellite s in the ECEF frame is given by

raS - |r ( sst a) - Fga(tza,a” + 6p/§e,a (3)

where dp?, , is a correction factor due to rotation of the earth causing Sagnac effect. The
line-of-sight unit vector (direction from which a signal arrives at the user antenna) in the
ECEF frame is given by

—e _’Ss(tsst,a) Fga(tssa a)
Uas e (75 (4)
‘ (tsta)_re (tsaa)‘
The range rate using ECEF velocities is
Fas = (JSS)T( es( st, a) - s( sa, a)) + 5ple a (5)
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Sagnac Correction
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The Sagnac correction is approximated as
50° Wie e e (s 6
pie,a ~ c [yes( st, a)Xea( sa,a es( st, a)yea( sa a)] ( )

and the range-rate Sagnac correction is

Vees,y(tsst,a)xg ( sa, a) + .yes( st a)Veea,x(tssa,a)
e

5ﬁ'§673 ~ T _Ves,x(tst a)yea( sa, a) - (tst a) eea,y(tssa,a) (7)
0
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Multilateration
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Use the range to multiple satellites to determine the position of the user equipment.
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Geometric Dillution of Precision i
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GNSS solution is affected by the geometry of the satellite constellation observed by the
receiver antenna.
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Positioning
All measurements are in ECEF #%
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Measurements of pseudorange g
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In reality there are errors in the propagation model used for the signal du&*tg“t6Hesphére

and the troposphere. In addition there are clock errors both at the satellite and the
receiver. Consquently, the pseudorange measurement is given by

Pmeasured =Ptrue T €ionospheric T €tropospheric T Eephemerist (8)

Esatellite clock 1 €receiver clock + €multipath

EXOSPHERE

THERMOSPHERE

MESOPHERE
STRATOSPHERE
TROPOSPHERE

Reflected Signals

www.intellego.fr (blog by manumanu)

http://www.engineeringsall.com/sources-of-errors-in-gps/
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Error Mitigation Techniques — Differential GPS
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@ Measure pseudorange error at surveyed locations

@ Subtract error at the user equipment before calculating position

Satellites

Differential Data Link User
Station
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Error Mitigation Techniques — WAAS GPS
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Wide Area Augmentation System
@ Provide corrections based on user position
@ Assumes atomospheric errors are locally correlated.

.=~ Geostationary Satellite GPS Satellites

Wide Area
Mast lion

GES : Ground Earth Station




