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1 Kalman Filter

Review: System Model

~̇x(t) = F (t)~x(t) +G(t)~w(t) (1)

~y(t) = H(t)~x(t) + ~v(t) (2)

System Discretization
Φk−1 = eFk−1τs ≈ I + Fk−1τs (3)

where Fk−1 is the average of F at times t and t − τs, and first order approximation is
used. Leading to

~xk = Φk−1 ~xk−1 + ~wk−1 (4)

~zk = Hk ~xk + ~vk (5)

where Φk−1 is (n× n) transition matrix relating ~xk−1 to ~xk , Hk is (m× n) matrix provides
noiseless connection between measurement and state vectors. .2

Review: Assumptions

• ~wk and ~vk are drawn from a Gaussian distribution, uncorrelated have zero mean and
statistically independent.

E{ ~wk ~wTi } =

{
Qk i = k

0 i 6= k
(6)

E{ ~vk~vTi } =

{
Rk i = k

0 i 6= k
(7)

E{ ~wk~vTi } =
{

0 ∀i, k (8)

• State covariance matrix

Qk−1 ≈
1

2

[
Φk−1Gk−1Q(tk−1)GTk−1ΦTk−1 +Gk−1Q(tk−1)GTk−1

]
τs (9)

.3
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Review: Kalman filter data flow
Initial estimate (~̂x0 and P0)

Compute Kalman gain
Kk = Pk|k−1H

T
k (HkPk|k−1H

T
k +Rk)−1

Update estimate with measurement ~zk
~̂xk|k = ~̂xk|k−1 +Kk(~zk −Hk~̂xk|k−1)

Update error covariance
Pk|k = (I −KkHk)Pk|k−1 (I −KkHk)

T
+ KkRkK

T
k

Project ahead
~̂xk|k−1 = Φk−1~̂xk−1|k−1

Pk|k−1 = Qk−1 + Φk−1Pk−1|k−1ΦTk−1

k = k + 1

.4

Remarks

• Kalman filter (KF) is optimal under the assumptions that the system is linear and the
noise is uncorrelated

• Under these assumptions KF provides an unbiased and minimum variance estimate.
• If the Gaussian assumptions is not true, Kalman filter is biased and not minimum

variance.
• If the noise is correlated we can augment the states of the system to maintain the

uncorrelated requirement of the system noise.
.5

2 State Augmentation

Correlated State Noise
Given a state space system

~̇x1(t) = F1(t)~x1(t) +G1(t)~w1(t)

~y1(t) = H1(t)~x1(t) + ~v1(t)

As we have seen the noise ~w1(t) may be non-white, e.g., correlated Gaussian noise, and as
such may be modeled as

~̇x2(t) = F2(t)~x2(t) +G2(t)~w2(t)

~w1(t) = H2(t)~x2(t)

.6

Correlated State Noise
Define a new augmented state

~xaug =

~x1(t)

~x2(t)

 (10)

therefore,

~̇xaug =

~̇x1(t)

~̇x2(t)

 =

F1(t) G1H2(t)

0 F2(t)

~x1(t)

~x2(t)

+

 0

G2(t)

 ~w2(t) (11)

and

~y(t) =
(
H1(t) 0

)~x1(t)

~x2(t)

+ ~v1(t) (12)
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Correlated Measurement Noise
Given a state space system

~̇x1(t) = F1(t)~x1(t) +G1(t)~w(t)

~y1(t) = H1(t)~x1(t) + ~v1(t)

In this case the measurement noise ~v1 may be correlated

~̇x2(t) = F2(t)~x2(t) +G2(t)~v2(t)

~v1(t) = H2(t)~x2(t)
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Correlated Measurement Noise
Define a new augmented state

~xaug =

~x1(t)

~x2(t)

 (13)

therefore,

~̇xaug =

~̇x1(t)

~̇x2(t)

 =

F1(t) 0

0 F2(t)

~x1(t)

~x2(t)

+

G1(t) 0

0 G2(t)

 ~w(t)

~v2(t)

 (14)

and

~y(t) =
(
H1(1) H2(t)

)~x1(t)

~x2(t)

 (15)

.9

3 Example

Design Example
You are to design a system that estimates the position and velocity of a moving point in

a straight line. You have:
1. an accelerometer corrupted with noise
2. an aiding sensor allowing you to measure absolute position that is also corrupted

with noise.
.10

Specification

• Sampling Rate Fs = 100Hz.
• Accelerometer specs

1. VRW = 1mg/
√
Hz.

2. BI = 7mg with correlation time 6s.
• Position measurement is corrupted with WGN. ∼ N (0, σ2

p), where σp = 2.5m
.11
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Input - Acceleration

True Acceleration and Acceleration with Noise
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Aiding Position Measurement

Absolute position measurement corrupted with noise
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Computed Position and Velocity
Using only the acceleration measurement and an integration approach to compute the

velocity, then integrate again to get position.
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Different Approaches

1. Clean up the noisy input to the system by filtering
2. Use Kalman filtering techniques with

• A model of the system dynamics (too restrictive)
• A model of the error dynamics and correct the system output in

– open-loop configuration, or
– closed-loop configuration.

.15

Approach 1 — Filtered input Filtered Accel Measurement
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Approach 1 — Filtered input Position and Velocity

Velocity
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Approach 1 — Filtered input Position and Velocity Errors

Velocity Error
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Open-Loop Integration
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Aiding Pos Sensor

INS

Filter

Correct INS Output
INS PV + errors

True Pos + errors Aiding sensor errors - INS errors

Inertial
errors
est.

+

+

−

+

.19

Closed-Loop Integration
If error estimates are fedback to correct the INS mechanization, a reset of the state

estimates becomes necessary.

Aiding Pos Sensor

INS INS Correction

Filter

Correct INS Output

+

−

.20

Covariance Matrices

• State noise covariance matrix (continuous)

E{~w(t)~wT (τ)} = Q(t)δ(t− τ)

• State noise covariance matrix (discrete)

E{~wk ~wTi } =

{
Qk i = k

0 i 6= k

• Measurement noise covariance matrix

E{~vk~vTi } =

{
Rk i = k

0 i 6= k

• Initial error covariance matrix

P0 = E{(~x0 − ~̂x0)(~x0 − ~̂x0)T } = E{~e0~̂eT0 }
.21
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System Modeling
The position, velocity and acceleration may be modeled using the following kinematic

model.

ṗ(t) = v(t)

v̇(t) = a(t)
(16)

where a(t) is the input. Therefore, our estimate of the position is p̂(t) that is the double
integration of the acceleration. .22

Sensor Model
Assuming that the accelerometer sensor measurement may be modeled as

ã(t) = a(t) + b(t) + wa(t) (17)

and the bias is Markov, therefore

ḃ(t) = − 1

Tc
b(t) + wb(t) (18)

where wa(t) and wb(t) are zero mean WGN with variances, respectively, Fs · V RW 2

E{wb(t)wb(t+ τ)} = Qb(t)δ(t− τ) (19)

Qb(t) =
2σ2

BI

Tc
(20)

and Tc is the correlation time and σBI is the bias instability.
Make sure that the V RW and σBI are converted to have SI units. .23

Error Mechanization
Define error terms as

δp(t) = p(t)− p̂(t), (21)

δṗ(t) = ṗ(t)− ˙̂p(t)

= v(t)− v̂(t)

= δv(t)

(22)

and

δv̇(t) = v̇(t)− ˙̂v(t)

= a(t)− â(t)

= −b(t)− wa(t)

(23)

where b(t) is modeled as shown in Eq. 18 .24

State Space Formulation

~̇x(t) =


δṗ(t)

δv̇(t)

ḃ(t)

 =


0 1 0

0 0 −1

0 0 − 1
Tc



δp(t)

δv(t)

b(t)

+


0 0 0

0 −1 0

0 0 1




0

wa(t)

wb(t)


= F (t)~x(t) +G(t)~w(t)

(24)

.25
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Covariance Matrix

• The continuous state noise covariance matrix Q(t) is

Q(t) =


0 0 0

0 V RW 2 0

0 0
2σ2

BI

Tc

 (25)

• The measurement noise covariance matrix is R = σ2
p , where σp is the standard devi-

ation of the noise of the absolute position sensor.
.26

Discretization
Now we are ready to start the implementation but first we have to discretize the system.

~x(k + 1) = Φ(k)~x(k) + ~wd(k) (26)

where
Φ(k) ≈ I + Fdt (27)

with the measurement equation

y(k) = H~x+ wp(k) = δp(k) + wp(k) (28)

where H = [1 0 0]. The discrete Qd is approximated as

Qk−1 ≈
1

2
[Φk−1G(tk−1)Q(tk−1)GT (tk−1))ΦTk−1+

G(tk−1)Q(tk−1)GT (tk−1)]dt
(29)

.27

Approach 2 — Open-Loop Compensation Position and Velocity

Open-loop Correction
Best estimate = INS out (pos & vel) + KF est error (pos & vel)
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Approach 2 — Open-Loop Compensation Position and Velocity Errors

Velocity Error
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Approach 2 — Open-Loop Compensation Pos Error & Bias Estimate

Position Error
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Approach 3 — Closed-Loop Compensation

Closed-loop Correction
Best estimate = INS out (pos,vel, & bias) + KF est error (pos, vel & bias) Use best estimate
on next iteration of INS Accel estimate = accel meas - est bias Reset state estimates before
next call to KF
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Approach 3 — Closed-Loop Compensation Position and Velocity Errors

Velocity Error
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Approach 3 — Closed-Loop Compensation Pos Error & Bias Estimate

Position Error
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