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1 Kalman Filter

Review: System Model

Z(t) = F(t)Z(t) + G(t)w(t) (1
y(t) = H(t)Z(t) + () (2)

System Discretization
P = 1T T+ By g7 (3)

where Fj_; is the average of F' at times ¢ and ¢ — 75, and first order approximation is
used. Leading to

—

k= Pp_1 Tp_1 + We—1 (4)
Zy = Hy Ty + 0y (5)
where ®;_; is (n X n) transition matrix relating &x_; to &y, Hy is (m X n) matrix provides

noiseless connection between measurement and state vectors.

Review: Assumptions

e 1w and ¥}, are drawn from a Gaussian distribution, uncorrelated have zero mean and
statistically independent.

S
E{widl) = ! 6
{wiw; } = { Pk (6)

g
E{v;,i’} ! 7
{vr; { Pk (7)
E{wj o] } = o Vi, k (8)

e State covariance matrix
1

Qr—1~ 3 [@1-1Gr-1Q(th—1)GE_1 {1 + Gr1Q(t-1)Gi_1] 7 9)




Review: Kalman filter data flow

Initial estimate (}[, and Py)

Compute lemwn gain

[ Ky = Pyt HiY (Hp Pr—y HYY + Ry) ™ ]\

Project ahead ’ l

Update estimate with measurement
Jw NEK T

Tue = oot + Kn(Fe — Hydeo1)
Pyko1 = Qr1 + ®pr Py ®F, ) ! L

[ Update error covariance ] J

Py = (I - Ki.Hy) Py (I - K Hy)" + KGR K]

Remarks

o Kalman filter (KF) is optimal under the assumptions that the system is linear and the
noise is uncorrelated

e Under these assumptions KF provides an unbiased and minimum variance estimate.

e If the Gaussian assumptions is not true, Kalman filter is biased and not minimum
variance.

o If the noise is correlated we can augment the states of the system to maintain the
uncorrelated requirement of the system noise.

2 State Augmentation

Correlated State Noise
Given a state space system

T1(t) = Fy ()71 (t) + G (b (t)
Hi(t) = Hi (1)1 (t) + v1(¢)

As we have seen the noise w;(t) may be non-white, e.g., correlated Gaussian noise, and as

such may be modeled as
Ta(t) = Fo(8)Z2(t) + Ga(t)wa(t)
w1 (t) = Ha(t)T2(1)

Correlated State Noise
Define a new augmented state

Zoug = fl(t)) (10)
To(t)
therefore,
faug Z1(t) _ Fi(t) G1Hs(t) Z1(t) N 0 (1) ()
Za(t) 0 Fy(t) 75 (t) Ga(t)
and
70 = (me o) (") +ae (12)




Correlated Measurement Noise
Given a state space system

#1(t) = Fi(t)Z1(t) + G1(t)w(t)

yi(t) = Hi()Z1(t) + 11 (1)

In this case the measurement noise ¥; may be correlated
o (t) = Fa(t)Za(t) + Ga(t)va(t)

T (t) = Ha(t)Za(t)

Correlated Measurement Noise
Define a new augmented state

therefore,
PR Z1(t) _ Fi(¢) 0 Z1(t) N G1(t)
R VA 0 Ft)) \ &) 0
and
70 = (H(1) H) ZZ)
3 Example

Design Example

(13)

You are to design a system that estimates the position and velocity of a moving point in

a straight line. You have:

1. an accelerometer corrupted with noise

2. an aiding sensor allowing you to measure absolute position that is also corrupted

with noise.

Specification

e Sampling Rate Fs = 100Hz.
e Accelerometer specs

1. VRW = Img/v Hz.

2. Bl = Tmg with correlation time 6s.

e Position measurement is corrupted with WGN. ~ N(O,cr]%), where o, = 2.5m
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Input - Acceleration

True Acceleration and Acceleration with Noise
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Computed Position and Velocity
Using only the acceleration measurement and an integration approach to compute the
velocity, then integrate again to get position.
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Different Approaches

1. Clean up the noisy input to the system by filtering
2. Use Kalman filtering techniques with

e A model of the system dynamics (too restrictive)
e A model of the error dynamics and correct the system output in

— open-loop configuration, or
— closed-loop configuration.

Approach 1 — Filtered input Filtered Accel Measurement

Accelerometer
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Approach 1 — Filtered input Position and Velocity
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Approach 1 — Filtered input Position and Velocity Errors
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Open-Loop Integration
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True Pos + errors Aliding sensor errors - INS errors

AIFSAN

Aiding Pos Sensor Filter
+ Inertial
Ve S
NS > (O errors
est.
INS PV + errors

Correct INS Output

Closed-Loop Integration
If error estimates are fedback to correct the INS mechanization, a reset of the state
estimates becomes necessary.

D)

Filter

Aiding Pos Sensor

INS INS Correction

Correct INS Output

Covariance Matrices

e State noise covariance matrix (continuous)
E{@(t)w’ (1)} = Q(1)5(t — 7)

e State noise covariance matrix (discrete)

> ST Qk i=k
E{ww; } = )
i#k
e Measurement noise covariance matrix
R, 1=k
- T
E{v,v; } = )
i#k

e Initial error covariance matrix

Py = E{(Z — o)(& — 70)T} = E{éoel }



System Modeling
The position, velocity and acceleration may be modeled using the following kinematic
model.

(16)

where a(t) is the input. Therefore, our estimate of the position is p(t) that is the double
integration of the acceleration.

Sensor Model
Assuming that the accelerometer sensor measurement may be modeled as

a(t) = alt) + b(t) + wa(t) (17)

and the bias is Markov, therefore

b(t) = fTicb(t) + wy(t) (18)

where w,(t) and wy(t) are zero mean WGN with variances, respectively, Fs - VRW?

E{wp(t)ws(t +7)} = Qu(t)d(t — 7) (19)
Qu(t) = 2(;@ (20)

and T is the correlation time and op; is the bias instability.
Make sure that the VRW and oy are converted to have Sl units.

Error Mechanization
Define error terms as

op(t) = p(t) — p(t), (21)
p(t) = p(t) — p(t)
= w(t) — 0(t) (22)
= v(t)

and

= a(t) — a(t) (23)
= —b(t) —wa(t)
where b(t) is modeled as shown in Eq. 18
State Space Formulation
op(t) 01 0 op(t) 0 0 0 0
Zt)=|[so@)[=1]0 0 -1 Su) |+ 10 =1 0f | wa(?) (24)
b(t) 00 —7) \ b 0 0 1/ \w(®)
= F()Z(t) + G(t)w(t)
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Covariance Matrix

e The continuous state noise covariance matrix Q(t) is

0 0 0
Qt)=|0 VRW? 0 (25)
N

e The measurement noise covariance matrix is R = o2, where o, is the standard devi-
ation of the noise of the absolute position sensor.

Discretization
Now we are ready to start the implementation but first we have to discretize the system.

Tk +1) = ®(k)Z(k) + Ta(k) (26)
where
O(k) ~ T+ Fdt (27)
with the measurement equation
y(k) = HT +wp(k) = op(k) +wp(k) (28)

where H = [1 0 0]. The discrete Q4 is approximated as

Qu-t ~ 811Gl 1)Qte-1)G (1) B+ 29
G(ti—1)Q(tr—1)G" (tp—1)]dt

Approach 2 — Open-Loop Compensation Position and Velocity

Open-loop Correction
Best estimate = INS out (pos & vel) + KF est error (pos & vel)
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Approach 2 — Open-Loop Compensation
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Approach 2 — Open-Loop Compensation

Position and Velocity Errors
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Approach 3 — Closed-Loop Compensation

Closed-loop Correction
Best estimate = INS out (pos,vel, & bias) + KF est error (pos, vel & bias) Use best estimate
on next iteration of INS Accel estimate = accel meas - est bias Reset state estimates before

next call to KF
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Approach 3 — Closed-Loop Compensation Position and Velocity Errors
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Approach 3 — Closed-Loop Compensation Pos Error & Bias Estimate
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