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Review: System Model NEW MEXICO TECH

Oy = e R T+ F g (3)

where Fi_1 is the average of F at times t and t — 75, and first order approximation is
used. Leading to
Xk = Pp1 X1+ Wx—1 (4)
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Aly 1 (NMT)




Review: Assumptions NEW MEXICO TECH

@ wy and vy are drawn from a Gaussian distribution, uncorrelated have zero mean and
statistically independent.

g
T ={ % )

0 i # k

o Re i=k
E{viv } =" " (7)

0 i#k
B} = {o vik (8)

@ State covariance matrix
1

Qr—1 ~ 5 [cbkfl Gro1Q(tk—1)Gl_1®]_1 + Gk—lQ(tkfl)Gkal} Ts 9)
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Review: Kalman filter data flow NEW MEXICO TECH

'SCIENCE + ENGINEERING + RESEARCH UNIVERSITY

Initial estimate (:?0 and Po)

v

Compute Kalman galn

Ki = Pig—1H{ (HkPu—1 H{ + Rie)™ l\

Upclate esnmate with measurement Zj
Xk = Xk\k 1+ Ki(2k — Hka\k 1)

Project aheacl
Kot = eo1Xo1jht
Prk—1 = Que1 + Prc1 Prije1®)_y

k=k+1
Update error covariance

P = (I = KkHy) Prjie1 (1 = KiHi)T + KcReK Y

Kalman Filt
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Remarks NEW MEXICO TECH

e Kalman filter (KF) is optimal under the assumptions that the system is linear and
the noise is uncorrelated

@ Under these assumptions KF provides an unbiased and minimum variance estimate.

o If the Gaussian assumptions is not true, Kalman filter is biased and not minimum
variance.

o If the noise is correlated we can augment the states of the system to maintain the
uncorrelated requirement of the system noise.

Kalman Filter

Aly E EE 565: Po! n, Navigation, and Timinc April 10, 2018 5/33



Correlated State Noise NEW MEXICO TECH

Given a state space system
%1(t) = F(5)%(t) + Gi(t)wa(t)

n(t) = Hi(t)x(t) + v(t)

State Augmentation
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Correlated State Noise NEW MEXICO TECH

Given a state space system

%1(t) = F(5)%(t) + Gi(t)wa(t)

n(t) = Hi(t)x(t) + ()

As we have seen the noise wy(t) may be non-white, e.g., correlated Gaussian noise, and
as such may be modeled as

%o(t) = Fa()%(t) + Go(t)Wa(t)
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Correlated State Noise NEW MEXICO TECH
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Correlated State Noise NEW MEXICO TECH

Define a new augmented state
. x1(t)
Xaug = | (10)
Xg(t)

therefore,

5 _ X1(t) _ Fi(t) GiHa(t)

X(t) 0 Fa(t)

and

State Augmentation
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Correlated Measurement Noise NEW MEXICO TECH

Given a state space system

X1(t) = Fi(t)z(t) + Gu(t)w(t)

n(t) = Hi(t)x(t) + ()

In this case the measurement noise vj may be correlated
%(t) = Fa()%(t) + Ga(t)va(t)

\71(t) = Hz(t))?z(t)
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Correlated Measurement Noise NEW MEXICO TECH

Define a new augmented state

. x1(t)
Xaug = (13)
o\
therefore,
P x1(t) _ Fi(t) 0 xi(t) N Gi(t) O w(t) (14
R0 0 F(t)) \%() 0 G(t)) \ (1)
and
() = (1) Ha(1)) Xfﬁg (15)
X2

State Augmentation
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Design Example NEW MEXICO TECH

You are to design a system that estimates the position and velocity of a moving point in
a straight line. You have:

@ an accelerometer corrupted with noise

@ an aiding sensor allowing you to measure absolute position that is also corrupted
with noise.

Example
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Specification NEW MEXICO TECH

e Sampling Rate Fs = 100Hz.
@ Accelerometer specs

@ VRW = 1mg/v Hz.

@ Bl = 7mg with correlation time 6s.

@ Position measurement is corrupted with WGN. ~ N(O,af,), where o, = 2.5m

Example
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Input - Acceleration NEW MEXICO TECH

True Acceleration and Acceleration with Noise

2 I I I I

Meas Accel
Example
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Aiding Position Measurement NEW MEXICO TECH

Absolute position measurement corrupted with noise
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Computed Position and Velocity NEW MEXICO TECH

Using only the acceleration measurement and an integration approach to compute the
velocity, then integrate again to get position.

M 3 . .
Velocity Position
20 T T 200 T T
15 [~ —
150 [~
10 [~ -
< £ 100 [
£ 5
[
50 [~
-5
10 \ \ \ \ 0
0 10 20 30 40 50 0 10 20 30 40 50
Time (sec) Time (sec)
Directly Computed Vel ————— Directly Computed Pos ~—————
True Vel — True Pos  —

Example
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Different Approaches NEW MEXICO TECH

@ Clean up the noisy input to the system by filtering
@ Use Kalman filtering techniques with

Example
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Different Approaches NEW MEXICO TECH

@ Clean up the noisy input to the system by filtering
@ Use Kalman filtering techniques with
o A model of the system dynamics (too restrictive)
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Different Approaches NEW MEXICO TECH

@ Clean up the noisy input to the system by filtering
@ Use Kalman filtering techniques with

o A model of the system dynamics (too restrictive)
o A model of the error dynamics and correct the system output in
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Different Approaches NEW MEXICO TECH

@ Clean up the noisy input to the system by filtering
@ Use Kalman filtering techniques with

o A model of the system dynamics (too restrictive)
o A model of the error dynamics and correct the system output in

@ open-loop configuration, or
o closed-loop configuration.

Example
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Approach 1 — Filtered input

Filtered Accel Measurement W MEXICO TECH

SCIENCE + ENGINEERING « RESEARCH UNIVERSITY

Accelerometer

Time (sec)

Measured ———— Truth
Filtered

ample
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Approach 1 — Filtered input

Position and Velocity W MEXICO TECH

SCIENCE + ENGINEERING « RESEARCH UNIVERSITY
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Approach 1 — Filtered input

Position and Velocity Errors W MEXICO TECH

SCIENCE + ENGINEERING « RESEARCH UNIVERSITY

H -1~ - 3 . . o _
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Open-Loop Integration NEW MEXICO TECH

True Pos + errors Aiding sensor errors - INS errors

Aiding Pos Sensor ) Filter

N

+ Inertial
NS C errors
~0)
est.

INS PV + errors

Correct INS Output

Example
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Closed-Loop Integration NEW MEXICO TECH

If error estimates are fedback to correct the INS mechanization, a reset of the state
estimates becomes necessary.

+
Aiding Pos Sensor O Filter

INS INS Correction

Correct INS Output

Example
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Covariance Matrices NEW MEXICO TECH

e State noise covariance matrix (continuous)
E{w(t)w" (1)} = Q(£)d(t — )

e State noise covariance matrix (discrete)

I Qe i=k
E{WkWiT} = .
0 i # k
@ Measurement noise covariance matrix
. Re 1=k
E{VkViT} = .
0 i#k

@ Initial error covariance matrix
Po = E{(% — %0)(% — %) } = E{é&e] }

Example
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System Modeling NEW MEXICO TECH

'SCIENCE + ENGINEERING + RESEARCH UNIVERSITY

The position, velocity and acceleration may be modeled using the following kinematic
model.

p(t) = v(t)

v(t) = a(t) (10)

where a(t) is the input. Therefore, our estimate of the position is p(t) that is the double
integration of the acceleration.

Example
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Sensor Model NEW MEXICO TECH

Assuming that the accelerometer sensor measurement may be modeled as

a(t) = a(t) + b(t) + wa(t) (17)

Example
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Sensor Model

Assuming that the accelerometer sensor measurement may be modeled as

NEW MEXICO TECH

SCIENCE + ENGINEERING « RESEARCH UNIVERSITY,

a(t) = a(t) + b(t) + wa(t)

(17)
and the bias is Markov, therefore
b(t) =~ 7-b(£) + () (18)
where w,(t) and wy(t) are zero mean WGN with variances, respectively, Fs - VRW?
E{wp(t)wp(t +7)} = Qu(t)0(t — 7) (19)

2
Qu(t) = 32 (20)

and T is the correlation time and op; is the bias instability.

(NMT)
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Sensor Model

Assuming that the accelerometer sensor measurement may be modeled as

NEW MEXICO TECH

'SCIENCE + ENGINEERING + RESEARCH UNIVERSITY

a(t) = a(t) + b(t) + wa(t)

(17)
and the bias is Markov, therefore
b(t) =~ 7-b(£) + () (18)
where w,(t) and wy(t) are zero mean WGN with variances, respectively, Fs - VRW?
E{wp(t)wp(t +7)} = Qu(t)0(t — 7) (19)

2
Qu(t) = 32 (20)

and T is the correlation time and op; is the bias instability.
Make sure that the VRW and opg; are converted to have S| units.

I (NMT)
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Error Mechanization NEW MEXICO TECH

Define error terms as

op(t) = p(t) — p(t), (21)
3p(t) = p(t) — p(t)
= v(t) — 0(¢) (22)
=Jv(t)

and

Example
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State Space Formulation NEW MEXICO TECH

5p(t) 01 0\ [dp(t) 0 0 0y [0
)I?'(t): sv(t)| =0 0 -1 dv(t)|+]10 -1 0 wa(t) (24)
b(t) 0 0 _TLC b(t) 0 0 1 wp(t)

= F(t)x(t) + G(t)w(t)

Example
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Covariance Matrix NEW MEXICO TECH

@ The continuous state noise covariance matrix Q(t) is

0 0 0
Q(t)=10 VRW?2 0 (25)

0 0 20%/

Tc

@ The measurement noise covariance matrix is R = 0,2;, where o}, is the standard

deviation of the noise of the absolute position sensor.

Example
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Discretization NEW MEXICO TECH

SCIENCE + ENGINEERING « RESEARCH UNIVERSITY,

Now we are ready to start the implementation but first we have to discretize the system.

R(k + 1) = d(k)X(k) + wg(k) (26)
where
®(k) ~ I + Fdt (27)
with the measurement equation
y(k) = HX 4 wp(k) = op(k) + wp(k) (28)

where H =[1 0 0]. The discrete Qg is approximated as

1
Q-1 & §[¢k71 G(ti-1)Q(tk—1) G (tx—1)) )1+

(29)
G(tk-1)Q(tx—1)G T (tx—1)]dt

Example
April 10, 2018 27 /33

vard  (NMT) EE 565: Position, Navigation, and Timing



Approach 2 — Open-Loop Compensation

Position and Velocity NEW MEXICO TECH

SCIENCE + ENGINEERING « RESEARCH UNIVERSITY

Open-loop Correction

Best estimate = INS out (pos & vel) + KF est error (pos & vel)

Velocity Position

20

Directly Computed Vel

Estimated Vel (KF)

True Vel

150

Directly Computed Pos

True Pos

Estimated Pos (KF)

10, 2018
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Approach 2 — Open-Loop Compensation

Position and Velocity Errors W MEXICO TECH

SCIENCE + ENGINEERING « RESEARCH UNIVERSITY
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Approach 2 — Open-Loop Compensation

Pos Error & Bias Estimate W MEXICO TECH
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Approach 3 — Closed-Loop Compensation
NEW MEXICO TECH

Position and Velocity
SCIENCE + ENGINEERING » RESEARCH UNIVERSITY

Closed-loop Correction

Best estimate = INS out (pos,vel, & bias) + KF est error (pos, vel & bias)
Use best estimate on next iteration of INS

Accel estimate = accel meas - est bias

Reset state estimates before next call to KF
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Example
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Approach 3 — Closed-Loop Compensation

Position and Velocity Errors W MEXICO TECH

SCIENCE + ENGINEERING « RESEARCH UNIVERSITY
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Approach 3 — Closed-Loop Compensation

Pos Error & Bias Estimate W MEXICO TECH
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