Lecture # Navigation Mathematics: Coordinate Frames EE 565: Position, Navigation and Timing Lecture Notes Update on January 23, 2018 Kevin Wedeward and Aly El-Osery, Electrical Engineering Dept., New Mexico Tech In collaboration with Stephen Bruder, Electrical & Computer Engineering, Embry-Riddle Aeronautical University #### 1 Coordinate Frames #### **Coordinate Frames** Right-hand coordinate frame α has - 1. origin o_{α} at which frame is located, and - 2. orthonormal vectors $x_{\alpha},y_{\alpha},z_{\alpha}$ that serve as axes and indicate positive directions. #### Coordinate Frames This definition implies $$\begin{split} x_{\alpha} \cdot x_{\alpha} &= y_{\alpha} \cdot y_{\alpha} = z_{\alpha} \cdot z_{\alpha} = 1 \\ x_{\alpha} \cdot y_{\alpha} &= y_{\alpha} \cdot z_{\alpha} = z_{\alpha} \cdot x_{\alpha} = 0 \\ x_{\alpha} \times y_{\alpha} &= z_{\alpha} \\ y_{\alpha} \times z_{\alpha} &= x_{\alpha} \\ z_{\alpha} \times x_{\alpha} &= y_{\alpha} \end{split}$$ #### Coordinate Frames Coordinate frames used as means to describe position and orientation/attitude of one frame with respect to another. # 2 Earth-Centered Inertial (ECI) Frame #### Earth-Centered Inertial (ECI) Frame #### **ECI Frame** - defined as an inertial frame, i.e., it is assumed not to accelerate or rotate with respect to the universe - effects of earth's orbit around sun and motion of the galaxy are very small (smaller than can be measured with inertial sensors) and neglected - ECI will be attached to earth, but won't spin with earth - inertial sensors measure "inertial" motion relative to ECI frame - Gyroscopes measure rate of change of orientation - Accelerometers measure linear acceleration - \bullet referred to as i-frame #### **ECI Frame** - ullet origin o_i of ECI is located near the center of mass (center of ellipsoidal representation) of the earth - ullet z_i -axis points along the nominal axis of rotation of the earth - true north **not** magnetic north! - spin axis moves in circular path with radius of 15 meters, which we'll neglect and use average value . .3 - x_i -axis lies in the equatorial plane and points from the earth to the sun at the vernal (spring) equinox - defined by the intersection (a line) of the equatorial plane and the earth-sun orbital plane - y_i -axis chosen to complete right hand coordinate system (90° ahead of x_i in direction of earth's rotation) The ECI coordinate frame does not rotate with the earth #### **ECI Frame** - o_i at earth's center - z_i -axis points along the earth's axis of rotation - x_i -axis points towards sun at vernal (spring) equinox - y_i -axis completes a right hand coordinate system # 3 Earth-Centered Earth-Fixed (ECEF) Frame #### Earth-Centered Earth-Fixed (ECEF) Frame **ECEF Frame** - not an inertial frame - fixed with respect to the earth, i.e., attached to the earth and spins with earth - \bullet referred to as e-frame #### **ECEF Frame** - ullet origin o_e is located (nearly) at the center of the mass of the earth (co-located with ECI's o_i) - z_e -axis points along the nominal axis of earth's rotation (same as ECI's z_i) - \bullet x_e -axis lies at the intersection of the equatorial plane and the reference meridian plane (i.e., Greenwich/Prime Meridian) - x_e points from o_e towards 0° longitude and 0° latitude (a little west of central Africa) - ullet y_e -axis is chosen to complete right hand coordinate system #### **ECEF Frame** - ullet z_e -axis points along axis of earth's rotation - x_e -axis points towards zero latitude and zero longitude - ullet y_e -axis completes right hand coordinate system - NMT's (lat, long) $\approx (34.07^{\circ}, -106.9^{\circ}) = (34.07^{\circ}, 253.1^{\circ})$ # 4 Local Navigation (Nav) Frame #### Local Navigation (Nav) Frame Nav Frame - typically not fixed with respect to the earth, i.e., free to move, but has specified orientation - also called geodetic, geographic, locally level, or tangential frame - ullet referred to as n-frame #### Nav Frame - ullet origin o_n is located at the center of mass of the body (e.g., air, land or sea vehicle) of interest - z_n -axis points "down" normal to the earth's surface (approximately towards the center of the earth) - ullet x_n y_n axes then constrained to lie in plane locally-level (tangential) to the earth's surface - x_n -axis points to the north pole - y_n -axis is chosen to complete right hand coordinate system - frame's configuration is often referred to as the NED frame - $x_n o \mathsf{North}$, $y_n o \mathsf{East}$, and $z_n o \mathsf{Down}$.12 .10 #### Nav Frame - o_n on (potentially moving) body - x_n -axis points north - y_n -axis points east - z_n -axis points "down" ## 5 Body Frame #### **Body Frame** Body Frame - attached to moving body (e.g., land, air or sea vehicle) and moves (position and orientation/attitute) with body - origin o_b located at the center of mass of the body (co-located with Nav frame's o_n) - x_b -axis points "forward" wrt moving body - z_b -axis points loosely "down" - varies with the roll/pitch of the vehicle - \bullet y_b -axis chosen to complete right hand coordinate system - \bullet referred to as b-frame #### **Body Frame** - body frame is fixed with respect to the vehicle - ullet x_b "forward" - z_b "down" - y_b completes right hand coordinate system ("right") .13 .14 #### **Body Frame** ### 6 Other Frames #### Other Frames - Wander Azimuth Frame (alternative to the Nav frame) - does not always point north (x- and y- axes displaced from north and east by an angle) to avoid numerical stability problems near the poles - Other locally level frames - Tangential Frame - st typically, refers to another type of the ECEF frame fixed to the Earth's surface (not moving like the n-frame) - Computer Frame - * virtual coordinate frame that represents where we think we are The End