EE 565: Position, Navigation and Timing

Navigation Mathematics: Coordinate Frames

Kevin Wedeward Aly El-Osery

Electrical Engineering Department New Mexico Tech Socorro, New Mexico, USA

In Collaboration with
Stephen Bruder
Electrical and Computer Engineering Department
Embry-Riddle Aeronautical Univesity
Prescott, Arizona, USA

January 23, 2018

Coordinate Frames

Right-hand coordinate frame α has

- lacktriangledown origin o_{lpha} at which frame is located, and
- **②** orthonormal vectors $x_{\alpha}, y_{\alpha}, z_{\alpha}$ that serve as axes and indicate positive directions.

Coordinate Frames

This definition implies

$$x_{\alpha} \cdot x_{\alpha} = y_{\alpha} \cdot y_{\alpha} = z_{\alpha} \cdot z_{\alpha} = 1$$

$$x_{\alpha} \cdot y_{\alpha} = y_{\alpha} \cdot z_{\alpha} = z_{\alpha} \cdot x_{\alpha} = 0$$

$$x_{\alpha} \times y_{\alpha} = z_{\alpha}$$

$$y_{\alpha} \times z_{\alpha} = x_{\alpha}$$

$$z_{\alpha} \times x_{\alpha} = y_{\alpha}$$

Coordinate Frames

Coordinate frames used as means to describe position and orientation/attitude of one frame with respect to another.

4 / 18

Earth-Centered Inertial (ECI) Frame

FCI Frame

- defined as an inertial frame, i.e., it is assumed not to accelerate or rotate with respect to the universe
 - effects of earth's orbit around sun and motion of the galaxy are very small (smaller than can be measured with inertial sensors) and neglected
 - ECI will be attached to earth, but won't spin with earth
- inertial sensors measure "inertial" motion relative to ECI frame
 - Gyroscopes measure rate of change of orientation
 - Accelerometers measure linear acceleration
- referred to as *i*-frame

- origin o_i of ECI is located near the center of mass (center of ellipsoidal representation) of the earth
- z_i-axis points along the nominal axis of rotation of the earth
 - true north not magnetic north!
 - spin axis moves in circular path with radius of 15 meters, which we'll neglect and use average value
- x_i -axis lies in the equatorial plane and points from the earth to the sun at the vernal (spring) equinox
 - defined by the intersection (a line) of the equatorial plane and the earth-sun orbital plane
- y_i -axis chosen to complete right hand coordinate system (90° ahead of x_i in direction of earth's rotation)

- origin o_i of ECI is located near the center of mass (center of ellipsoidal representation) of the earth
- \bullet z_i -axis points along the nominal axis of rotation of the earth
 - true north not magnetic north!
 - spin axis moves in circular path with radius of 15 meters, which we'll neglect and use average value
- x_i -axis lies in the equatorial plane and points from the earth to the sun at the vernal (spring) equinox
 - defined by the intersection (a line) of the equatorial plane and the earth-sun orbital plane
- y_i -axis chosen to complete right hand coordinate system (90° ahead of x_i in direction of earth's rotation)

The ECI coordinate frame does **not** rotate with the earth

• o_i at earth's center

- o; at earth's center
- z_i-axis points along the earth's axis of rotation

- o; at earth's center
- z_i-axis points along the earth's axis of rotation
- x_i-axis points towards sun at vernal (spring) equinox

- o_i at earth's center
- z_i-axis points along the earth's axis of rotation
- x_i-axis points towards sun at vernal (spring) equinox
- y_i-axis completes a right hand coordinate system

7 / 18

Earth-Centered Earth-Fixed (ECEF) Frame

FCFF Frame

- not an inertial frame
- fixed with respect to the earth, i.e., attached to the earth and spins with earth
- referred to as *e*-frame

- origin o_e is located (nearly) at the center of the mass of the earth (co-located with $ECI's o_i$
- z_e -axis points along the nominal axis of earth's rotation (same as ECl's z_i)
- x_a -axis lies at the intersection of the equatorial plane and the reference meridian plane (i.e., Greenwich/Prime Meridian)
 - tied to concept of latitude and longitude
 - x_e points from o_e towards 0° longitude and 0° latitude (a little west of central Africa)
- V_e -axis is chosen to complete right hand coordinate system

9 / 18

• z_e -axis points along axis of earth's rotation

- z_e -axis points along axis of earth's rotation
- x_e-axis points towards zero latitude and zero longitude

10 / 18

- z_e -axis points along axis of earth's rotation
- x_e-axis points towards zero latitude and zero longitude
- y_e -axis completes right hand coordinate system

- z_e -axis points along axis of earth's rotation
- x_e-axis points towards zero latitude and zero longitude
- y_e -axis completes right hand coordinate system
- NMT's (lat, long) \approx (34.07°, -106.9°) = (34.07°, 253.1°)

10 / 18

Local Navigation (Nav) Frame

Nav Frame

- typically **not** fixed with respect to the earth, i.e., free to move, but has specified orientation
- also called geodetic, geographic, locally level, or tangential frame
- referred to as *n*-frame

- \bullet origin o_n is located at the center of mass of the body (e.g., air, land or sea vehicle) of interest
- z_n -axis points "down" normal to the earth's surface (approximately towards the center of the earth)
- $x_n y_n$ axes then constrained to lie in plane locally-level (tangential) to the earth's surface
 - x_n -axis points to the north pole
 - y_n -axis is chosen to complete right hand coordinate system
- frame's configuration is often referred to as the NED frame
 - $x_n \to \text{North}$, $y_n \to \text{East}$, and $z_n \to \text{Down}$

• o_n on (potentially moving) body

- o_n on (potentially moving) body
- x_n -axis points north

Nav

- o_n on (potentially moving) body
- x_n -axis points north
- y_n -axis points east

- \bullet o_n on (potentially moving) body
- x_n -axis points north
- y_n -axis points east
- *z*_n-axis points "down"

EE 565: Position, Navigation and Timing

- attached to moving body (e.g., land, air or sea vehicle) and moves (position and orientation/attitute) with body
- origin o_b located at the center of mass of the body (co-located with Nav frame's o_n)
- x_b -axis points "forward" wrt moving body
- z_b-axis points loosely "down"
 - varies with the roll/pitch of the vehicle
- \bullet y_b -axis chosen to complete right hand coordinate system
- referred to as *b*—frame

 body frame is fixed with respect to the vehicle

- body frame is fixed with respect to the vehicle
- x_b "forward"

- body frame is fixed with respect to the vehicle
- x_b "forward"
- z_b "down"

- body frame is fixed with respect to the vehicle
- x_b "forward"
- z_b "down"
- y_b completes right hand coordinate system ("right")

Kevin Wedeward, Aly El-Osery (NMT)

Other Frames

17 / 18

- Wander Azimuth Frame (alternative to the Nav frame)
 - does not always point north (x and y axes displaced from north and east by an angle) to avoid numerical stability problems near the poles
- Other locally level frames
 - Tangential Frame
 - typically, refers to another type of the ECEF frame fixed to the Earth's surface (not moving like the n-frame)
 - Computer Frame
 - virtual coordinate frame that represents where we think we are

The End

