EE 565: Position, Navigation and Timing

Navigation Mathematics: Angular and Linear Velocity

Kevin Wedeward Aly El-Osery

Electrical Engineering Department New Mexico Tech Socorro, New Mexico, USA

In Collaboration with
Stephen Bruder
Electrical and Computer Engineering Department
Embry-Riddle Aeronautical Univesity
Prescott, Arizona, USA

February 6, 2018

Lecture Topics

- Review
- 2 Introduction to Velocity
- Oerivative of Rotation Matrix and Angular Velocity Approach I
- 🐠 Derivative of Rotation Matrix and Angular Velocity Approach II
- 5 Properties of Skew-symmetric Matrices
- 6 Propagation/Addition of Angular Velocity
- Linear Position, Velocity and Acceleration

Review

• translation between frames $\{a\}$ and $\{c\}$:

$$\vec{r}_{ac} = \vec{r}_{ab} + \vec{r}_{bc}$$

Review

• translation between frames $\{a\}$ and $\{c\}$:

$$\vec{r}_{ac} = \vec{r}_{ab} + \vec{r}_{bc}$$

• written wrt/frame $\{a\}$

$$\vec{r}_{ac}^{a} = \vec{r}_{ab}^{a} + \vec{r}_{bc}^{a}$$
$$= \vec{r}_{ab}^{a} + C_{b}^{a} \vec{r}_{bc}^{b}$$

• Given relationship for translation between moving (rotating and translating) frames

$$\vec{r}_{ac}^a = \vec{r}_{ab}^a + C_b^a \vec{r}_{bc}^b$$

what is linear velocity between frames?

Intro to Vel

• Given relationship for translation between moving (rotating and translating) frames

$$\vec{r}_{ac}^a = \vec{r}_{ab}^a + C_b^a \vec{r}_{bc}^b$$

what is linear velocity between frames?

$$\dot{\vec{r}}_{ac}^{a} \equiv \frac{d}{dt} \vec{r}_{ac}^{a}$$

$$= \frac{d}{dt} \left(\vec{r}_{ab}^{a} + C_{b}^{a} \vec{r}_{bc}^{b} \right)$$

$$= \dot{\vec{r}}_{ab}^{a} + \dot{C}_{b}^{a} \vec{r}_{bc}^{b} + C_{b}^{a} \dot{\vec{r}}_{bc}^{b}$$

• Why is $\dot{C}_h^a \neq 0$ in general?

• Given relationship for translation between moving (rotating and translating) frames

$$\vec{r}_{ac}^a = \vec{r}_{ab}^a + C_b^a \vec{r}_{bc}^b$$

what is linear velocity between frames?

$$\dot{\vec{r}}_{ac}^{a} \equiv \frac{d}{dt} \vec{r}_{ac}^{a}$$

$$= \frac{d}{dt} \left(\vec{r}_{ab}^{a} + C_{b}^{a} \vec{r}_{bc}^{b} \right)$$

$$= \dot{\vec{r}}_{ab}^{a} + \dot{C}_{b}^{a} \vec{r}_{bc}^{b} + C_{b}^{a} \dot{\vec{r}}_{bc}^{b}$$

• Why is $\dot{C}_b^a \neq 0$ in general? Recoordinatization of \vec{r}_{bc}^b is time-dependent.

• Given relationship for translation between moving (rotating and translating) frames

$$\vec{r}_{ac}^a = \vec{r}_{ab}^a + C_b^a \vec{r}_{bc}^b$$

what is linear velocity between frames?

$$\dot{\vec{r}}_{ac}^{a} \equiv \frac{d}{dt} \vec{r}_{ac}^{a}$$

$$= \frac{d}{dt} \left(\vec{r}_{ab}^{a} + C_{b}^{a} \vec{r}_{bc}^{b} \right)$$

$$= \dot{\vec{r}}_{ab}^{a} + \dot{C}_{b}^{a} \vec{r}_{bc}^{b} + C_{b}^{a} \dot{\vec{r}}_{bc}^{b}$$

- Why is $\dot{C}_b^a \neq 0$ in general? Recoordinatization of \vec{r}_{bc}^b is time-dependent.
- \dot{C}_b^a is directly related to angular velocity between frames $\{a\}$ and $\{b\}$.

Given a rotation matrix C, one of its properties is

$$[C_b^a]^T C_b^a = C_b^a [C_b^a]^T = \mathcal{I}$$

Taking the time-derivative of the "right-inverse" property

$$\frac{d}{dt}\left(C_b^a[C_b^a]^T\right) = \frac{d}{dt}\mathcal{I}$$

Given a rotation matrix C, one of its properties is

$$[C_b^a]^T C_b^a = C_b^a [C_b^a]^T = \mathcal{I}$$

Taking the time-derivative of the "right-inverse" property

$$\frac{d}{dt} \left(C_b^a [C_b^a]^T \right) = \frac{d}{dt} \mathcal{I}$$

$$\Rightarrow \underbrace{\dot{C}_b^a [C_b^a]^T}_{\Omega_{ab}^a} + \underbrace{C_b^a [\dot{C}_b^a]^T}_{\left(\dot{C}_b^a [C_b^a]^T \right)^T} = 0$$

Given a rotation matrix C, one of its properties is

$$[C_b^a]^T C_b^a = C_b^a [C_b^a]^T = \mathcal{I}$$

Taking the time-derivative of the "right-inverse" property

$$\frac{d}{dt} \left(C_b^a [C_b^a]^T \right) = \frac{d}{dt} \mathcal{I}$$

$$\Rightarrow \underbrace{\dot{C}_b^a [C_b^a]^T}_{\Omega_{ab}^a} + \underbrace{C_b^a [\dot{C}_b^a]^T}_{[\Omega_{ab}^a]^T} = 0$$

$$\Rightarrow \Omega_{ab}^a + [\Omega_{ab}^a]^T = 0$$

Given a rotation matrix C, one of its properties is

$$[C_b^a]^T C_b^a = C_b^a [C_b^a]^T = \mathcal{I}$$

Taking the time-derivative of the "right-inverse" property

$$\frac{d}{dt} \left(C_b^a [C_b^a]^T \right) = \frac{d}{dt} \mathcal{I}$$

$$\Rightarrow \underbrace{\dot{C}_b^a [C_b^a]^T}_{\Omega_{ab}^a} + \underbrace{C_b^a [\dot{C}_b^a]^T}_{[\Omega_{ab}^a]^T} = 0$$

$$\Rightarrow \Omega_{ab}^a + [\Omega_{ab}^a]^T = 0$$

$$\Rightarrow \Omega_{ab}^{a}$$
 is skew-symmetric!

5 / 19

Define this skew-symmetric matrix Ω^{a}_{ab}

$$\Omega^{s}_{ab} = [\vec{\omega}^{s}_{ab} \times] = egin{bmatrix} 0 & -\omega_{z} & \omega_{y} \ \omega_{z} & 0 & -\omega_{x} \ -\omega_{y} & \omega_{x} & 0 \end{bmatrix}$$

Define this skew-symmetric matrix Ω^a_{ab}

$$\Omega_{ab}^{s} = [\vec{\omega}_{ab}^{s} imes] = egin{bmatrix} 0 & -\omega_{z} & \omega_{y} \ \omega_{z} & 0 & -\omega_{x} \ -\omega_{y} & \omega_{x} & 0 \end{bmatrix}$$

Note
$$\Omega_{ab}^a = \dot{C}_b^a [C_b^a]^T$$

$$\Rightarrow \dot{C}_b^a = \Omega_{ab}^a C_b^a$$

is a means of finding derivative of rotation matrix provided we can further understand Ω^a_{ab} .

Now for some insight into physical meaning of Ω^a_{ab} .

• Consider a point p on a rigid body rotating with angular velocity $\vec{\omega} = [\omega_x, \ \omega_y, \ \omega_z]^T = \dot{\theta}\vec{k} = \dot{\theta}[k_x, \ k_y, \ k_z]^T$ with \vec{k} a unit vector.

From mechanics, linear velocity $\vec{v_p}$ of point is

From mechanics, linear velocity $\vec{v_p}$ of point is

$$\vec{v_p} = \vec{\omega} \times \vec{r_p} = \begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix} \times \begin{bmatrix} r_x \\ r_y \\ r_z \end{bmatrix} = \begin{bmatrix} \omega_y r_z - \omega_z r_y \\ \omega_z r_x - \omega_x r_z \\ \omega_x r_y - \omega_y r_x \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix}}_{2} \begin{bmatrix} r_x \\ r_y \\ r_z \end{bmatrix}$$

From mechanics, linear velocity \vec{v}_p of point is

$$\vec{v}_{p} = \vec{\omega} \times \vec{r}_{p} = \begin{bmatrix} \omega_{x} \\ \omega_{y} \\ \omega_{z} \end{bmatrix} \times \begin{bmatrix} r_{x} \\ r_{y} \\ r_{z} \end{bmatrix} = \begin{bmatrix} \omega_{y} r_{z} - \omega_{z} r_{y} \\ \omega_{z} r_{x} - \omega_{x} r_{z} \\ \omega_{x} r_{y} - \omega_{y} r_{x} \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & -\omega_{z} & \omega_{y} \\ \omega_{z} & 0 & -\omega_{x} \\ -\omega_{y} & \omega_{x} & 0 \end{bmatrix}}_{\Omega = [\vec{\omega} \times]} \begin{bmatrix} r_{x} \\ r_{y} \\ r_{z} \end{bmatrix}$$

 $\Rightarrow \Omega$ represents angular velocity and performs cross product

Now let's add fixed frame $\{a\}$ and rotating frame $\{b\}$ attached to moving body such that there is angular velocity $\vec{\omega}_{ab}$ between them.

Now let's add fixed frame $\{a\}$ and rotating frame $\{b\}$ attached to moving body such that there is angular velocity $\vec{\omega}_{ab}$ between them.

Start with position

$$\vec{r}_{ap}^a = \underbrace{\vec{r}_{ab}^a}_0 + C_b^a \vec{r}_{bp}^b$$

Kevin Wedeward, Aly El-Osery (NMT)

Now let's add fixed frame $\{a\}$ and rotating frame $\{b\}$ attached to moving body such that there is angular velocity $\vec{\omega}_{ab}$ between them.

and take derivative wrt time

$$\begin{split} \dot{\vec{r}}_{ap}^{a} &= \underbrace{\dot{C}_{b}^{a}}_{\Omega_{ab}^{a}C_{b}^{a}} \vec{r}_{bp}^{b} + \underbrace{C_{b}^{a}\dot{\vec{r}}_{bp}^{b}}_{0} \\ &= \Omega_{ab}^{a}C_{b}^{a}\vec{r}_{bp}^{b} \\ &= \Omega_{ab}^{a}\vec{r}_{bp}^{a} = [\vec{\omega}_{ab}^{a}\times]\vec{r}_{bp}^{a} \end{split}$$

Start with position

$$\vec{r}_{ap}^a = \underbrace{\vec{r}_{ab}^a}_{0} + C_b^a \vec{r}_{bp}^b$$

Now let's add fixed frame $\{a\}$ and rotating frame $\{b\}$ attached to moving body such that there is angular velocity $\vec{\omega}_{ab}$ between them.

Start with position

$$\vec{r}_{ap}^a = \underbrace{\vec{r}_{ab}^a}_{0} + C_b^a \vec{r}_{bp}^b$$

and take derivative wrt time

$$\begin{array}{ll} \dot{\vec{r}}_{ap}^{a} & = & \underbrace{\dot{C}_{b}^{a}}_{\Omega_{ab}^{a}C_{b}^{a}} \vec{r}_{bp}^{b} + \underbrace{C_{b}^{a}\dot{\vec{r}}_{bp}^{b}}_{0} \\ & = & \Omega_{ab}^{a}C_{b}^{a}\vec{r}_{bp}^{b} \\ & = & \Omega_{ab}^{a}\vec{r}_{bp}^{a} = [\vec{\omega}_{ab}^{a}\times]\vec{r}_{bp}^{a} \end{array}$$

from which it is observed (compare to $\vec{v}_p = \vec{\omega} \times \vec{r}_p$) that Ω^a_{ab} represents cross product with angular velocity $\vec{\omega}^{\,a}_{\,ab}$.

Second approach to $\frac{d}{dt}C$ and angular velocity

- Another approach to developing derivative of rotation matrix and angular velocity is based upon angle-axis representation of orientation and rotation matrix as exponential.
- This approach is included in notes.

Properties of Skew-symmetric Matrices

$$C\Omega C^{\mathsf{T}} \vec{b} = C \left[\vec{\omega} \times \left(C^{\mathsf{T}} \vec{b} \right) \right]$$
$$= C \vec{\omega} \times \left(CC^{\mathsf{T}} \vec{b} \right)$$
$$= C \vec{\omega} \times \vec{b}$$
$$= [C \vec{\omega} \times] \vec{b}$$

Therefore (from above),

$$C\Omega C^T = C[\vec{\omega} \times] C^T = [C\vec{\omega} \times]$$

and (via distributive property)

$$C[\vec{\omega}\times] = [C\vec{\omega}\times]C$$

noting both $\vec{\omega}$ and vector with which cross-product will be taken are assumed to be in the same coordinate frame and thus both need to be recoordinatized.

12 / 19

Properties of Skew-symmetric Matrices

$$\dot{C}_{b}^{a} = \Omega_{ab}^{a} C_{b}^{a}$$

$$= \left[\vec{\omega}_{ab}^{a} \times \right] C_{b}^{a}$$

$$= \left[C_{b}^{a} \vec{\omega}_{ab}^{b} \times \right] C_{b}^{a}$$

$$= C_{b}^{a} \left[\vec{\omega}_{ab}^{b} \times \right]$$

$$= C_{b}^{a} \Omega_{ab}^{b}$$

$$\Rightarrow \dot{C}_b^a = \Omega_{ab}^a C_b^a = C_b^a \Omega_{ab}^b$$

Summary of Angular Velocity and Notation

Angular velocity can be

- described as a vector
 - ullet the angular velocity of the b-frame wrt the a-frame resolved in the c-frame, $ec{\omega}_{ab}^{\ c}$
 - $\bullet \ \vec{\omega}_{ab} = -\vec{\omega}_{ba}$

Summary of Angular Velocity and Notation

Angular velocity can be

- described as a vector
 - ullet the angular velocity of the b-frame wrt the a-frame resolved in the c-frame, $ec{\omega}_{ab}^{\ c}$
 - arphi $ec{\omega}_{ab}=-ec{\omega}_{ba}$
- described as a skew-symmetric matrix $\Omega^c_{ab} = [\vec{\omega}^c_{ab} \times]$
 - the skew-symmetric matrix is equivalent to the vector cross product when pre-multiplying another vector

14 / 19

Summary of Angular Velocity and Notation

Angular velocity can be

- described as a vector
 - ullet the angular velocity of the b-frame wrt the a-frame resolved in the c-frame, $ec{\omega}_{ab}^{\ c}$
 - $ec{\omega}_{ab} = -ec{\omega}_{ba}$
- described as a skew-symmetric matrix $\Omega_{ab}^{c} = [\vec{\omega}_{ab}^{\ c} \times]$
 - the skew-symmetric matrix is equivalent to the vector cross product when pre-multiplying another vector
- related to the derivative of the rotation matrix

$$\dot{C}_b^a = \Omega_{ab}^a C_b^a = C_b^a \Omega_{ab}^b$$
$$\dot{C}_b^a = -\Omega_{ba}^a C_b^a = -C_b^a \Omega_{ba}^b$$

Propagation/Addition of Angular Velocity

Consider the derivative of the composition of rotations $C_2^0 = C_1^0 C_2^1$.

$$\begin{array}{rcl} & \frac{d}{dt}C_{2}^{0} & = \frac{d}{dt}C_{1}^{0}C_{2}^{1} \\ \Rightarrow & \dot{C}_{2}^{0} & = \dot{C}_{1}^{0}C_{2}^{1} + C_{1}^{0}\dot{C}_{2}^{1} \\ \Rightarrow & \Omega_{02}^{0}C_{2}^{0} & = \Omega_{01}^{0}C_{1}^{0}C_{2}^{1} + C_{1}^{0}C_{2}^{1}\Omega_{12}^{2} \\ \Rightarrow & \Omega_{02}^{0} & = \Omega_{01}^{0}C_{2}^{0}\left[C_{2}^{0}\right]^{T} + C_{2}^{0}\Omega_{12}^{2}\left[C_{2}^{0}\right]^{T} \\ \Rightarrow & \left[\vec{\omega}_{02}^{0}\times\right] & = \left[\vec{\omega}_{01}^{0}\times\right] + \left[C_{2}^{0}\vec{\omega}_{12}^{2}\times\right] \\ \Rightarrow & \vec{\omega}_{02}^{0} & = \vec{\omega}_{01}^{0} + \vec{\omega}_{12}^{0} \end{array}$$

⇒ angular velocities (as vectors) add so long as resolved common coordinate system

Linear Position

We can get back to where we started ... motion (translation and rotation) between frames and their derivatives.

Translation (position) between frames $\{0\}$ and $\{1\}$:

$$\vec{r}_{02}^{0} = \vec{r}_{01}^{0} + \vec{r}_{12}^{0}$$

= $\vec{r}_{01}^{0} + C_{1}^{0} \vec{r}_{12}^{1}$

Linear Velocity

Linear velocity:

$$\begin{split} \dot{\vec{r}}_{02}^{0}(t) &= \frac{d}{dt} \left(\vec{r}_{01}^{0} + C_{1}^{0} \vec{r}_{12}^{1} \right) \\ &= \dot{\vec{r}}_{01}^{0} + \dot{C}_{1}^{0} \vec{r}_{12}^{1} + C_{1}^{0} \dot{\vec{r}}_{12}^{1} \\ &= \dot{\vec{r}}_{01}^{0} + \Omega_{01}^{0} C_{1}^{0} \vec{r}_{12}^{1} + C_{1}^{0} \dot{\vec{r}}_{12}^{1} \\ &= \dot{\vec{r}}_{01}^{0} + \left[\vec{\omega}_{01}^{0} \times \right] C_{1}^{0} \vec{r}_{12}^{1} + C_{1}^{0} \dot{\vec{r}}_{12}^{1} \\ &= \dot{\vec{r}}_{01}^{0} + \left[\vec{\omega}_{01}^{0} \times \right] C_{1}^{0} \vec{r}_{12}^{1} + C_{1}^{0} \dot{\vec{r}}_{12}^{1} \\ &= \dot{\vec{r}}_{01}^{0} + \vec{\omega}_{01}^{0} \times \left(C_{1}^{0} \vec{r}_{12}^{1} \right) + C_{1}^{0} \dot{\vec{r}}_{12}^{1} \end{split}$$

Linear acceleration:

$$\ddot{r}_{02}^{0} = \frac{d}{dt} \left(\dot{\vec{r}}_{01}^{0} + \vec{\omega}_{01}^{0} \times \left(C_{1}^{0} \vec{r}_{12}^{1} \right) + C_{1}^{0} \dot{\vec{r}}_{12}^{1} \right) \\ = \ddot{\vec{r}}_{01}^{0} + \dot{\vec{\omega}}_{01}^{0} \times \left(C_{1}^{0} \vec{r}_{12}^{1} \right) + \vec{\omega}_{01}^{0} \times \left(\dot{c}_{1}^{0} \vec{r}_{12}^{1} \right) + \vec{\omega}_{01}^{0} \times \left(c_{1}^{0} \dot{\vec{r}}_{12}^{1} \right) + \dot{\vec{c}}_{1}^{0} \dot{\vec{r}}_{12}^{1} + C_{1}^{0} \dot{\vec{r}}_{12}^{1} \\ = \ddot{\vec{r}}_{01}^{0} + \dot{\vec{\omega}}_{01}^{0} \times \vec{r}_{12}^{0}(t) + \dot{\vec{\omega}}_{01}^{0} \times \left(\vec{\omega}_{01}^{0} \times \vec{r}_{12}^{0}(t) \right) + 2\vec{\omega}_{01}^{0} \times \left(C_{1}^{0} \dot{\vec{r}}_{12}^{1} \right) + C_{1}^{0} \dot{\vec{r}}_{12}^{1} \\ = \ddot{\vec{r}}_{01}^{0} + \dot{\vec{\omega}}_{01}^{0} \times \vec{r}_{12}^{0}(t) + \dot{\vec{\omega}}_{01}^{0} \times \left(\vec{\omega}_{01}^{0} \times \vec{r}_{12}^{0}(t) \right) + 2\vec{\omega}_{01}^{0} \times \left(C_{1}^{0} \dot{\vec{r}}_{12}^{1} \right) + C_{1}^{0} \dot{\vec{r}}_{12}^{1} \\ = \ddot{\vec{r}}_{01}^{0} + \dot{\vec{\omega}}_{01}^{0} \times \vec{r}_{12}^{0}(t) + \dot{\vec{\omega}}_{01}^{0} \times \left(\vec{\omega}_{01}^{0} \times \vec{r}_{12}^{0}(t) \right) + 2\vec{\omega}_{01}^{0} \times \left(C_{1}^{0} \dot{\vec{r}}_{12}^{1} \right) + C_{1}^{0} \dot{\vec{r}}_{12}^{1} \\ = \ddot{\vec{r}}_{01}^{0} + \dot{\vec{\omega}}_{01}^{0} \times \vec{r}_{12}^{0}(t) + \dot{\vec{\omega}}_{01}^{0} \times \left(\vec{\omega}_{01}^{0} \times \vec{r}_{12}^{0}(t) \right) + 2\vec{\omega}_{01}^{0} \times \left(C_{1}^{0} \dot{\vec{r}}_{12}^{1} \right) + C_{1}^{0} \dot{\vec{r}}_{12}^{1} \\ = \ddot{\vec{r}}_{01}^{0} + \dot{\vec{\omega}}_{01}^{0} \times \vec{r}_{12}^{0}(t) + \dot{\vec{\omega}}_{01}^{0} \times \left(\vec{\sigma}_{01}^{0} \times \vec{r}_{12}^{0}(t) \right) + 2\vec{\omega}_{01}^{0} \times \left(\vec{r}_{1}^{0} \dot{\vec{r}}_{12}^{1} \right) + C_{1}^{0} \dot{\vec{r}}_{12}^{1} \\ = \ddot{\vec{r}}_{01}^{0} + \dot{\vec{\omega}}_{01}^{0} \times \vec{r}_{01}^{0} \times \left(\vec{\sigma}_{01}^{0} \times \vec{r}_{12}^{0}(t) \right) + 2\vec{\omega}_{01}^{0} \times \left(\vec{r}_{1}^{0} \dot{\vec{r}}_{12}^{1} \right) + C_{1}^{0} \dot{\vec{r}}_{12}^{0} \\ = \ddot{\vec{r}}_{01}^{0} + \dot{\vec{r}}_{01}^{0} \times \vec{r}_{01}^{0} \times \vec{r}_{0$$

The End

