- 1. Describe each of the following rotations using roll-pitch-yaw angles (ϕ, θ, ψ) , angleaxis (θ, \vec{k}) and quaternion \bar{q} .
 - (a) no rotation
 - (b) rotation about x by 90°
 - (c) rotation about y by 180°
 - (d) rotation about z by -90°
- 2. Consider the quaternion $\bar{q}_{x,-90^{\circ}}$ that describes a rotation about the x-axis by -90° .
 - (a) Show the opposite rotation $\bar{q}_{x,90^{\circ}}$ is its inverse (conjugate) using the definition.
 - (b) Compose $\bar{q}_{x,-90^{\circ}}$ with $\bar{q}_{x,90^{\circ}}$ via multiplication (\otimes) on the left and right. Do both yield the identity quaternion?
 - (c) Given $\bar{q}_1^0 = \bar{q}_{x,-90^\circ}$ describes the orientation of frame {1} relative to frame {0}, recoordinatize the vector $\vec{v}^1 = [1, 1, 1]^T$ in frame {0}, i.e., use the quaternion to find \vec{v}^0 .
- 3. How many multiplies and additions are needed for each of the following computations?
 - (a) composition of rotations via rotation matrices, $C_1^2 C_0^1$
 - (b) composition of rotations via quaternions, $\bar{q}_1^2 \otimes \bar{q}_0^1$
 - (c) recoordinatization of a vector via rotation matrix, $C_1^2 \vec{r}^1$
 - (d) recoordinatization of a vector via quaternion, $\bar{q}_1^2 \otimes \check{r}^1 \otimes (\bar{q}_1^2)^{-1}$
- 4. Consider the time-varying rotation matrix $C_b^a = R_{z,\theta(t)}$ that describes the orientation of frame {b} as it rotates about frame {a}'s z-axis by angle $\theta(t)$. Determine the angular velocity as a skew-symmetric matrix (via $\Omega_{ab}^a = \dot{C}_b^a [C_b^a]^T$) and vector $\vec{\omega}_{ab}^a$. Do these answers make sense in light of the type of rotation between the frames?
- 5. Does the approach of the previous problem extend to quaternions, i.e., if we are given the time-varying quaternion $\bar{q}_b^a(t) = \bar{q}_{z,\theta(t)}$, can we use $\dot{\bar{q}}_b^a(t) = \frac{1}{2} [\breve{\omega}_{ab}^a \otimes] \bar{q}_b^a(t)$, which we derived in class, to find the corresponding angular velocity $\vec{\omega}_{ab}^a$? If so, find it.

6. Consider the time-varying coordinate transformation matrix C_b^n given below that describes the orientation of the body frame as it rotates with respect to the navigation frame.

$$C_b^n = \begin{bmatrix} \cos(t) & \sin(t)\sin(t^2) & \sin(t)\cos(t^2) \\ 0 & \cos(t^2) & -\sin(t^2) \\ -\sin(t) & \cos(t)\sin(t^2) & \cos(t)\cos(t^2) \end{bmatrix}$$

- (a) Determine the analytic form of the time-derivative of C_b^n (i.e., $\dot{C}_b^n = \frac{dC_b^n}{dt}$) via a term-by-term differentiation.
- (b) Develop MATLAB functions that accept "t" (i.e., time) as a numerical input and return C_b^n and \dot{C}_b^n , respectively, as numerical outputs.
- (c) Using the C_b^n and \dot{C}_b^n functions from above, compute the angular velocity vector $\vec{\omega}_{nb}^n$ at time t = 0 sec (**Hint**: you might want to compute Ω_{nb}^n first).
 - i. What is the magnitude (i.e., $\dot{\theta}$, angular speed) of the angular velocity?
 - ii. About what unit vector (\vec{k}_{nb}) has the instantaneous rotation occurred?
- (d) Using the C_b^n and \dot{C}_b^n functions from above, compute the angular velocity vector $\vec{\omega}_{nb}^n$ at time t = 0.5 sec.
 - i. What is the magnitude (i.e., $\dot{\theta}$, angular speed) of the angular velocity?
 - ii. About what unit vector (\vec{k}_{nb}^n) has the instantaneous rotation occurred?
- (e) Using C_b^n and \dot{C}_b^n functions from above, compute the angular velocity vector $\vec{\omega}_{nb}^n$ at time t = 1 sec.
 - i. What is the magnitude (i.e., $\dot{\theta}$, angular speed) of the angular velocity?
 - ii. About what unit vector (\vec{k}_{nb}^n) has the instantaneous rotation occurred?
- (f) In practice, direct measurement of the angular velocity vector $\vec{\omega}_{nb}^n$ can prove challenging, so a finite-difference approach may be taken given two sequential orientations represented by $C_b^n(t)$ and $C_b^n(t + \Delta t)$ a small time Δt apart. Consider the approximate value of the angular velocity vector $\vec{\omega}_{nb}^n$ derived by using the finite difference

$$\dot{C}_b^n(t) \approx \frac{C_b^n(t + \Delta t) - C_b^n(t)}{\Delta t}$$

at times t = 0, 0.5, and 1 sec. Compare the "analytic" values for $\dot{\theta}$ and \vec{k}_{nb}^{n} (found in parts b, c and d) with your approximations from the finite difference using $\Delta t = 0.1$ sec. How large are the errors?

(g) How small does the sampling time (i.e., Δt) need to be to get a "good" (better than 99.9%) approximation of the angular speed (i.e., $\dot{\theta}$)?